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High blood pressure, which affects more than 1 billion people world-
wide, is a major risk factor for myocardial infarction, stroke and 
chronic kidney disease. Approximately 9 million deaths each year 
are attributable to high blood pressure, including >50% of deaths 
from coronary heart disease and stroke1,2. High blood pressure is 
more prevalent in people of East Asian and South Asian ancestry 
and is a major contributor to their increased risk of stroke and coro-
nary heart disease3,4. Genome-wide association studies (GWAS) have 
identified over 50 genetic loci influencing blood pressure in predomi-
nantly European populations5–16. A role for epigenetic mechanisms 
in blood pressure regulation has also been suggested17–20.

We carried out a GWAS in East Asians and South Asians, as well as 
Europeans, to seek both cosmopolitan and population-specific genetic 
effects for five blood pressure phenotypes: systolic blood pressure 
(SBP), diastolic blood pressure (DBP), pulse pressure, mean arterial 
pressure (MAP) and hypertension (Supplementary Fig. 1) (ref. 5). We 
then sought DNA coding and gene regulatory mechanisms, including 
DNA methylation and gene transcription, to help explain the relation-
ships we observed between sequence variation and blood pressure.

RESULTS
Genome-wide association and replication testing
We used genome-wide association data from 99,994 individuals of 
East Asian (n = 31,516), European (n = 35,352) and South Asian  
(n = 33,126) ancestry. Characteristics of the participants and infor-
mation on the genotyping arrays and imputation are summarized 
in Supplementary Tables 1–3. Phenotype-specific meta-analysis 
was carried out separately for East Asian, European and South Asian  
samples, followed by a meta-analysis across the three ancestral  
population groups.

The trans-ancestry genome-wide association results identified 
4,077 variants with P < 1 × 10−4 against any blood pressure phenotype,  

distributed among 630 genetic loci. At each locus, we identified the 
sentinel SNP (the SNP with the lowest P value against any phenotype) 
and carried out combined analysis with phenotype-specific results 
from the International Consortium on Blood Pressure (ICBP) GWAS 
(maximum n = 87,205) (refs. 8,9). This analysis identified 19 previ-
ously unreported loci where the sentinel SNP had suggestive evidence 
for association with blood pressure (P < 1 × 10−7; Supplementary 
Table 4). We performed further testing of these 19 SNPs in addi-
tional samples of up to 133,052 individuals (48,268 East Asian, 
68,456 European and 16,328 South Asian; Supplementary Table 5).  
Twelve of the 19 SNPs reached both P < 0.05 in replication testing 
and P < 1 × 10−9 in the combined analysis of data from across all 
stages (Table 1, Supplementary Figs. 2 and 3, and Supplementary 
Table 6). We set the threshold for genome-wide significance as  
P = 1 × 10−9 to provide a conservative Bonferroni correction for test-
ing ~2.1 million SNPs against the 5 blood pressure phenotypes, in the 
3 ancestry groups and overall.

Regional association plots for the 12 newly identified loci are shown 
in Figures 1–4 and Supplementary Figure 4; associations of the 12 
sentinel SNPs with other blood pressure phenotypes are shown in 
Supplementary Figure 5 and Supplementary Table 7. There was 
little evidence for heterogeneity of effect between the ancestry groups 
in either the genome-wide association or replication data. We also 
replicated previously reported associations with blood pressure at 23 
genetic loci at genome-wide significance; a further 17 loci were asso-
ciated with blood pressure phenotypes at P < 0.05 (Supplementary 
Fig. 6 and Supplementary Table 8).

In population-specific analyses, we identified two further SNPs 
(rs9425586 in East Asians and rs13395018 in Europeans) that 
reached P < 1 × 10−7 against a blood pressure phenotype in their 
respective discovery meta-analyses. We carried out ancestry-specific 
testing in the East Asian and European replication samples. Neither 
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SNP reached P < 0.05 in replication testing or P < 1 × 10−9 in com-
bined analysis with the discovery data (Supplementary Table 6).

Candidate sequence variants and genes at new loci
Taking advantage of trans-ancestry differences in linkage disequi-
librium (LD), we used MANTRA and varLD21,22 to narrow the 99% 
credible SNP sets and facilitate future efforts to identify the causal 
variants underlying blood pressure variability (Supplementary  
Figs. 7 and 8, and Supplementary Table 9).

Next, we searched for genetic variants at the newly identified blood 
pressure loci that might influence protein coding or gene transcrip-
tion and that were in high LD (r2 >0.8) with sentinel blood pressure  
SNPs. We identified SNPs that were nonsynonymous (n = 9) or  
splicing variants (n = 2) and/or were present in regulatory regions 
(including transcription factor binding sites, promoter and enhancer 
regions, DNase I hypersensitivity sites, regulatory motifs and CpG 
islands; n = 825; Supplementary Table 10) (refs. 23,24).

Analysis of coding variation and gene regulatory signatures 
(Supplementary Tables 10 and 11) identified 20 genes as possible 
candidates underlying the associations with blood pressure at the 
newly identified loci (Table 1). Current knowledge on gene function 
for all 20 candidates is summarized in Supplementary Table 12.

Association of sentinel SNPs with DNA methylation
We investigated the relationships of the sentinel blood pres-
sure SNPs with local DNA methylation (within 1 Mb of each 
SNP) in 1,904 South Asians with whole-genome methylation data 
available (peripheral blood; Illumina HumanMethylation450 
BeadChip (450K) array; Supplementary Table 13). We found a  
~2-fold enrichment for association between sequence variation and 
DNA methylation in comparison with expectations under the null 
hypothesis (P = 0.01; Supplementary Fig. 9). Twenty-eight of the  
35 sentinel blood pressure SNPs were associated with one or more 
methylation markers at P < 3.8 × 10−6 (P < 0.05 after Bonferroni  
correction for the 13,275 SNP-CpG association tests; Supplementary 
Table 14); the 28 leading CpG sites (the CpG sites with the lowest  

P value for association with each sentinel blood pressure SNP) are sum-
marized in Table 2. All 28 leading CpG sites showed replication in fur-
ther testing among 4,780 European and South Asian samples (P < 0.05  
and consistent direction of effect; Supplementary Table 15). Regional 
plots of DNA methylation are shown in Figures 1–4. There was little 

table 1 Genetic loci newly identified to be associated with blood pressure
Sentinel SNP Chr. Position (bp) Candidate gene EA AA EAF Phenotype n Effect (mm Hg) P

rs1344653 2 19,730,845 OSR1n,m A G 0.54 PP 220,853 −0.27 (0.04) 7.8 × 10−12

rs1275988 2 26,914,364 KCNK3n,m T C 0.50 MAP 236,311 −0.37 (0.04) 5.0 × 10−21

rs2014912 4 86,715,670 ARHGAP24n,m T C 0.16 SBP 242,456 0.62 (0.08) 5.4 × 10−17

rs13359291 5 122,476,457 PRDM6n,m A G 0.31 SBP 229,584 0.53 (0.07) 8.9 × 10−16

rs9687065 5 148,391,140 ABLIM3m, SH3TC2  n,ns A G 0.76 DBP 259,216 0.26 (0.04) 7.4 × 10−11

rs1563788 6 43,308,363 TTBK1m, SLC22A7sv, ZNF318n,e T C 0.31 SBP 220,757 0.51 (0.06) 2.2 × 10−16

rs2107595 7 19,049,388 HDAC9  n A G 0.24 PP 209,305 0.31 (0.05) 3.9 × 10−11

rs10260816 7 46,010,100 IGFBP3  n,m,ns C G 0.62 PP 207,070 0.32 (0.04) 1.5 × 10−14

rs751984 11 61,278,246 LRRC10Bn, SYT7n,m T C 0.76 MAP 233,082 0.33 (0.05) 7.7 × 10−12

rs12579720 12 20,173,764 PDE3An C G 0.33 DBP 218,606 −0.32 (0.04) 2.2 × 10−16

rs2240736 17 59,485,393 C17orf82  n, TBX2n,m,ns T C 0.65 MAP 217,197 0.35 (0.04) 2.2 × 10−16

rs740406 19 2,232,221 AMHm, DOT1Ln, PLEKHJ1n, SF3A2  n A G 0.85 PP 193,219 −0.55 (0.07) 3.1 × 10−15

Candidate genes are annotated by the nature of the variant: e, expression quantitative trait locus (eQTL); n, nearby gene (±10 kb); ns, nonsynonymous; sv, splicing variant;  
m, DNA methylation marker. Position is based on Build 37 of the reference genome. Effect is shown as unit change (mm Hg) in blood pressure (standard error, SE) per copy of the 
risk allele (SBP, DBP, PP (pulse pressure), MAP). SNPs rs751984, rs2240736 and rs740406 are near or in annotated microRNA genes. Chr., chromosome; EA, effect allele;  
AA, alternate allele; EAF, effect allele frequency; n, sample size.
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Figure 1 Regional plots for the three newly identified loci  
associated with SBP. Associations of SNPs with SBP in the  
trans-ancestry GWAS (blue markers; n = 99,994) and of  
sentinel SNP with methylation at nearby CpG sites (red markers;  
n = 2,664) are shown. The identities of the sentinel SNP and  
most closely associated CpG site are provided; correlations  
between markers are shown in supplementary Figure 4.
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evidence for heterogeneity of effect of SNPs on methylation between 
Europeans and South Asians (Supplementary Fig. 10).

We found evidence of replication of the relationships of the  
sentinel blood pressure SNPs with methylation of their respective 
leading CpG sites in genomic DNA from cord blood (P = 4.0 × 10−4, 
binomial test for directionally consistent effects, n = 237 samples; 
Supplementary Table 16). The presence of these associations at 
an early stage of life, before substantial environmental exposure, 
lends support to the view that the sequence variants have a direct 
effect on DNA methylation and argues against reverse causation.  

We separately showed that association of sentinel SNPs with  
local DNA methylation is generalizable across multiple  
phenotypic traits and not unique to blood pressure phenotypes 
(Supplementary Fig. 11).

Sequence variation, DNA methylation and blood pressure
We used genetic association and the concept of Mendelian randomi-
zation to test whether DNA methylation might contribute, at least 
in part, to the relationship of the sentinel SNPs with blood pressure.  
For the 28 sentinel SNPs that were associated with methylation  
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at the 26 leading CpG sites associated with the sentinel blood pressure 
SNPs in the present study. Using data from 7 tissue samples (including 
muscle, liver, and subcutaneous and visceral fat), we showed that DNA 
methylation in blood at the 26 CpG sites was closely correlated with 
methylation in a wide range of tissues (Pearson correlation coefficient, 
0.61–0.97; P = 1.2 × 10−4 to 1.3 × 10−47; Supplementary Figs. 14 and 15).  
Our findings support the view that, for the CpG sites examined, 
methylation levels in blood provide a surrogate for patterns of  
methylation in other tissues.

Clinical relevance of our findings
We tested whether the genetic variants singly or in aggregate contrib-
ute to risk of clinical phenotypes associated with high blood pressure. 
In single-variant tests, we found that the 35 (known and new) senti-
nel SNPs were enriched for variants associated with adiposity, type 2  
diabetes, coronary heart disease and kidney function in published 
GWAS (P = 2.5 × 10−3 to 1.8 × 10−11; Supplementary Table 18). We 
further showed that weighted genetic risk scores comprising known 
and new variants predicted increased left ventricular mass by electro-
cardiographic criteria, circulating levels of NT-proBNP (a marker of 
heart function), clinical coronary heart disease, and cardiovascular and 
all-cause mortality (P = 0.04 to 8.6 × 10−6; Supplementary Table 19).  
Our findings provide evidence that the genetic loci associated with 
blood pressure contribute to cardiovascular outcomes.

DISCUSSION
Our genome-wide association and replication study in 320,251 people 
identifies 12 new genetic loci influencing blood pressure phenotypes 
in 3 ancestry groups. Among the genetic loci and candidate genes 
identified, several have been implicated in other cardiovascular and 
metabolic phenotypes through genome-wide association. IGFBP3, 
KCNK3, PDE3A and PRDM6 have a role in vascular smooth muscle 

12

10

–l
og

10
 (
P

) 
S

N
P

 v
s.

 M
A

P

–l
og

10
 (
P

) 
S

N
P

 v
s.

 M
A

P

8

6

4

2

0
CD6 CD5 PGA3

PGA5 DAK SDHAF2

PGA4

VWCE

CYBASC3

DDB1 CPSF7

DKFZP434K028

TMEM258

BEST1

FTH1

MIR611

FEN1

MIR1908

FADS2

FADS3

RAB3IL1FADS1DAGLA

MYRFRPLP0P2

PPP1R32

MIR4488

LRRC10B

TMEM138

TMEM216

SYT7

VPS37C

10 60

50

40

30

20

10

–log
10  (P

) sentinel S
N

P
 vs. C

pG

0

8

6

4

2

0

rs1275988
2.1 × 10–11

cg19115882
2.1 × 10–32

HADHA

GPR113

HADHB

EPT1

CCDC164 C2orf70

CIB4 KCNK3

SLC35F6

CENPA

DPYSL5 TMEM214 TCF23

AGBL5

EMILIN1

ABHD1

C2orf53

OST4

CGREF1

PREB

KHKMAPRE3

OTOF

35

30

–log
10  (P

) sentinel S
N

P
 vs. C

pG

25

20

15

10

5

0

26.6 26.8 27.0 27.2 27.4

Position on chr. 2 (Mb)

60.8 61.0 61.2 61.4 61.6

Position on chr. 11 (Mb)

–l
og

10
 (
P

) 
S

N
P

 v
s.

 M
A

P

10

8

6

4

2

0

cg00009053
2.8 × 10–58

rs751984
9.0 × 10–8

TBX4BCAS3 NACA2 BRIP1

INTS2TBX2

C17orf82

–log
10  (P

) sentinel S
N

P
 vs. C

pG

150

100

50

0

59.0 59.2 59.4 59.6
Position on chr. 17 (Mb)

59.8

rs2240736
1.0 × 10–9

cg00730441
6.7 × 10–131

Figure 4 Regional plots for the three newly identified loci 
associated with MAP. Associations of SNPs with MAP in the trans-
ancestry GWAS (blue markers; n = 99,994) and of sentinel SNPs 
with methylation at nearby CpG sites (red markers; n = 2,664) 
are shown. The identities of the sentinel SNP and most closely 
associated CpG site are provided; correlations between markers are 
shown in supplementary Figure 4.

of cis CpG sites (Supplementary Table 15), we quantified the three-
way relationships between the sentinel SNPs, their leading CpG sites 
and blood pressure among the 6,757 Europeans and South Asians 
with DNA methylation data available (Supplementary Table 17). 
Across all 28 loci, we found that the observed effects of SNPs on 
blood pressure were correlated with the effects predicted through 
association with methylation (r = 0.52; P = 0.005; Fig. 5). Of the 
14 sentinel SNPs with the highest predicted genetic effects (above 
the median for the distribution), 13 were directionally consistent  
(P = 1.2 × 10−4, sign test), with a close correlation between the 
observed and predicted effects (r = 0.72; P = 0.004). Our results sup-
port the view that DNA methylation may be involved in the regulatory 
pathway linking DNA sequence variants to blood pressure.

Fine mapping the association of SNPs and DNA methylation
The 450K methylation array assays ~2% of the estimated ~30 million 
CpG sites in the human genome. To further evaluate the relationship 
between the sentinel blood pressure SNPs and DNA methylation at 
the 19p13.3 locus near AMH, we used next-generation sequencing 
to fine map DNA methylation at all CpG sites within 1 kb on either 
side of the leading 450K CpG site in 168 samples. We successfully 
quantified DNA methylation at 34 CpG sites, of which only 2 are 
assayed by the 450K array (Supplementary Fig. 12). The sentinel 
blood pressure SNP at the AMH locus (rs740406) had a directionally 
consistent effect on methylation at 29 of the 34 CpG sites assayed 
(P = 4 × 10−5, sign test; Supplementary Fig. 13), consistent with 
published data suggesting that clusters of adjacent CpG sites are co-
regulated25,26. Of the 34 CpG sites assayed, we found that 28 had a 
positive relationship with blood pressure (P = 2 × 10−4, sign test), and 
10 were associated with blood pressure at P < 0.05 (P = 5 × 10−7 for 
enrichment; Supplementary Fig. 13).

Cross-tissue patterns of DNA methylation
DNA methylation can show tissue-specific patterns that contribute 
to differences in transcriptional regulation and cellular differentia-
tion27. We investigated the cross-tissue patterns of DNA methylation 
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cell biology. PDE3A is a phosphodiesterase involved in cyclic GMP 
(cGMP) metabolism, vascular smooth muscle contraction and car-
diovascular function28. Pharmacological inhibitors of PDE3A lower 
blood pressure29. KCNK3 is a potassium channel involved in the 
regulation of vascular tone; mutations in KCNK3 are associated with 
pulmonary hypertension30. PRDM6 acts as an epigenetic regulator 
of vascular smooth muscle cell phenotypic plasticity by suppressing  
differentiation and maintaining proliferative potential. Genetic 
variants near PRDM6 are associated with intracranial aneurysm31. 
IGFBP3 modulates the actions of insulin-like growth factors (IGFs), 
circulating hormones that influence vascular smooth muscle cell 
function. Serum levels of IGFBP3 are associated with cardiovascular 
disease32. We also note several candidate genes that are involved in 
renal function, a determinant of blood pressure. ARHGAP24 influ-
ences podocyte formation33, OSR1 encodes a transcription factor that 

influences renal mass and function34, and SLC22A7 encodes a key 
renal solute transporter35; genetic variants at TBX2 are determinants 
of renal function and chronic kidney disease36.

The mechanisms underlying the associations between com-
mon genetic variants and blood pressure are incompletely under-
stood. The majority of the loci identified do not contain common 
or low-frequency coding variants to account for the association 
between the sentinel SNP and blood pressure. Using both the 450K  

table 2 cpG sites associated in cis with the sentinel blood pressure sNPs

Sentinel SNP Chr. EA Lead CpG
CpG position  

(bp)
SNP-CpG 

distance (bp)

SNP–CpGa
Nearest gene  

to CpG
Relation to 
gene (CpG)

CpG–eQTLb

Effect P Effect P

rs880315 1 T cg02903756 10,750,680 46,186 −0.17 7.0 × 10−24 CASZ1 Body 0.09 2.5 × 10−2

rs12567136 1 T cg05228408 11,865,352 18,379 0.6 2.8 × 10−248 MTHFR 5′ UTR 2.34 6.5 × 10−4

rs1344653 2 A cg13996430 19,741,587 −10,742 −0.12 7.0 × 10−14 OSR1 Intergenic 0.20 2.4 × 10−1

rs1275988 2 T cg19115882 26,919,145 −4,781 −0.3 1.8 × 10−74 KCNK3 Body 0.25 1.5 × 10−4

rs7629767 3 T cg02108620 42,002,230 41,279 0.57 2.1 × 10−741 ULK4 5′ UTR −0.1 4.4 × 10−1

rs13149993 4 A cg05452645 81,117,647 40,898 −0.26 3.7 × 10−47 PRDM8 5′ UTR 0.03 5.8 × 10−1

rs2014912 4 T cg20784207 86,597,598 118,072 −0.27 9.7 × 10−51 ARHGAP24 Body −0.51 2.4 × 10−1

rs7733331 5 T cg24363955 32,788,467 40,379 −0.22 1.6 × 10−41 NPR3 Upstream 0.09 5.9 × 10−1

rs13359291 5 A cg23290100 122,435,626 40,831 −0.88 6.8 × 10−372 PRDM6 Body −0.05 4.4 × 10−1

rs9687065 5 A cg18129178 148,520,854 −129,714 −0.45 2.0 × 10−138 ABLIM3 TSS −0.07 3.5 × 10−1

rs11960210 5 T cg22790839 157,883,933 −66,299 −0.28 3.1 × 10−65 EBF1 Intergenic −0.11 1.7 × 10−1

rs1563788 6 T cg00084398 43,249,983 58,380 −0.42 5.0 × 10−139 TTBK1 Body 0.06 5.3 × 10−1

rs17080102 6 C cg02784464 151,121,916 −117,146 0.27 7.2 × 10−29 PLEKHG1 Body 0 3.0 × 10−2

rs10260816 7 C cg12244052 45,961,469 48,631 −0.08 4.6 × 10−6 IGFBP3 Upstream 0.59 7.6 × 10−15

rs731141 10 A cg10751070 96,143,568 −244,887 0.14 8.3 × 10−16 TBC1D12 Intergenic 0.1 5.2 × 10−2

rs11191375 10 T cg07119830 104,412,306 52,351 0.97 3. × 10−746 TRIM8 Body 0.08 2.5 × 10−2

rs2484294 10 A cg05575054 115,804,968 −12,906 −0.26 2.7 × 10−49 ADRB1 Body −0.23 1.7 × 10−1

rs751984 11 T cg00009053 61,283,865 −5,619 0.46 1.2 × 10−167 SYT7 3′ UTR 0.1 5.1 × 10−1

rs2055450 11 A cg05925497 100,734,094 −183,677 0.19 1.2 × 10−30 ARHGAP42 Body −0.09 2.7 × 10−5

rs10894192 11 A cg03927812 130,271,903 −5,786 −0.41 5.1 × 10−136 ADAMTS8 Intergenic −0.07 4.3 × 10−1

rs11105354 12 A cg00757033 89,920,650 105,873 −0.76 9.6 × 10−452 GALNT4 Intergenic 1.02 2.1 × 10−7

rs3184504 12 T cg10833066 111,807,467 96,904 −0.59 4.8 × 10−222 FAM109A Intergenic −0.02 6.7 × 10−1

rs1378942 15 A cg02696790 75,250,997 −173,630 0.53 3.1 × 10−223 RPP25 Intergenic −0.23 1.7 × 10−1

rs8032315 15 A cg06330618 91,428,456 −10,159 0.45 3.0 × 10−493 FES Body −3.19 1.3 × 10−7

rs2301597 17 T cg19407385 43,099,144 74,129 −0.72 6.0 × 10−1257 DCAKD Intergenic 0.74 7.8 × 10−6

rs7405452 17 T cg22053945 46,651,360 23,310 −0.72 4.0 × 10−358 HOXB3 5′ UTR −0.07 3.3 × 10−1

rs2240736 17 T cg00730441 59,483,863 1,530 0.65 1.4 × 10−330 TBX2 Body −0.06 3.1 × 10−1

rs740406 19 A cg04052466 2,251,061 −18,840 −0.46 3.7 × 10−71 AMH Body −0.08 1.5 × 10−2

Results are shown for SNP–CpG associations reaching both P < 3.8 × 10−6 in discovery (Bonferroni correction for 13,275 SNP–CpG marker tests) and P < 0.05 with consistent 
direction of effect in replication testing (supplementary table 15). For each sentinel SNP, the lead CpG site is provided (lowest P value for association of the SNP with the  
CpG; PSNP–CpG), along with the genomic context of the CpG site. The gene nearest to the CpG site is listed, as well as the P value for association between the CpG site and  
expression of the nearest gene (PCpG–eQTL). Chr., chromosome; EA, effect allele; NA, not available.
aThe P value shown is for combined analysis of discovery and replication data for SNP–CpG association. bStatistical significance inferred at P < 1.8 × 10−3 (Bonferroni correction for  
26 CpG–eQTL tests).
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Figure 5 DNA methylation as a potential mediator of the relationship 
between sentinel SNPs and blood pressure at the loci reaching genome-
wide significance in our study. Results are shown for the 28 sentinel 
SNPs that are associated with methylation at P < 0.05 after Bonferroni 
correction for multiple tests. Predicted effects on blood pressure are 
based on the relationship of sentinel SNPs with methylation and the 
relationship of methylation with blood pressure (BP); observed effects 
represent the direct relationship between the sentinel SNPs and blood 
pressure (discovery phenotype). The P value is for the correlation of the 
observed versus predicted effects (solid line).
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methylation array and fine mapping through targeted bisulfite 
sequencing, we show that SNPs influencing blood pressure are 
associated with methylation at multiple local CpG sites and that 
DNA methylation is associated with blood pressure. Using genetic 
association and the concept of Mendelian randomization, we further  
show that the observed effect of SNPs on blood pressure is closely 
correlated with the effect predicted through association with  
methylation. The effects of genetic variation on methylation can be 
demonstrated in the newborn, in the absence of substantial adverse 
environmental exposures, further supporting a causal relation-
ship. Our results suggest that DNA methylation may be involved 
in the regulatory pathway linking common genetic variants with 
blood pressure at some of the loci identified, consistent with find-
ings from experimental models of hypertension37. We note an 
effect of genome-wide associated sentinel SNPs on DNA methyla-
tion for traits in addition to blood pressure, suggesting that DNA  
methylation might have a wider role in linking common genetic 
variation to multiple phenotypes.

URLs. Sequenom EpiDesigner BETA, http://www.epidesigner.com/.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. GWAS summary statistics and next-generation 
sequencing data have been deposited in the European Genome- 
phenome Archive (EGA) under study accession EGAS00001001427.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Populations and phenotypes. Details of the participating cohorts are summa-
rized in Supplementary Table 1 and in the Supplementary Note. Phenotype 
definitions were based on the published literature6. SBP, DBP, pulse pressure 
and MAP were continuous variables measured in millimeters of mercury. SBP 
and DBP were directly measured in millimeters of mercury, and pulse pressure 
and MAP were calculated by SBP – DBP and (2 × DBP + SBP)/3, respectively. 
SNP associations for SBP, DBP, pulse pressure and MAP were tested by linear 
regression with age and sex using an additive genetic model. For individuals 
being treated with blood pressure–lowering medication, the following adjust-
ments to the blood pressure values were made before performing the regres-
sion analysis: SBP (+15), DBP (+10), pulse pressure (+5) and MAP (+11.667). 
For hypertension, logistic regression with sex as a covariate was applied, with 
cases and controls defined as follows: cases: (i) SBP ≥160 mm Hg or DBP ≥100 
mm Hg or on antihypertensive treatment and (ii) age of onset ≤65 years; con-
trols: (i) SBP <130 mm Hg and DBP <85 mm Hg and not on antihypertensive 
treatment and (ii) age ≥50 years). Data and sample collection by the cohorts 
participating in the study was approved by respective research ethics commit-
tees, and all research participants gave written consent to take part.

Genome-wide association. Genome-wide association was analyzed in a total 
of 99,994 subjects, of whom 31,516 were of East Asian ancestry, 35,352 were 
of European ancestry and 33,126 were of South Asian ancestry. Imputation 
was carried out using haplotypes from HapMap Phase 2. Details of geno-
typing arrays and imputation are summarized in Supplementary Table 2. 
Quality control checks included a check of the distribution of effect sizes across  
phenotypes and comparison of allele frequencies against those expected from 
HapMap populations. There were between 2,127,883 (SBP) and 2,166,286 
(hypertension) SNPs for analysis after quality control. Genomic control infla-
tion factors ranged from 1.01 to 1.09 in the ancestry-specific meta-analyses 
and from 1.05 to 1.12 in global analyses (Supplementary Table 3).

Genome-wide significance was inferred at P < 1 × 10−9. This conservative 
choice fully corrects for the ~10 million SNP-phenotype combinations tested, 
in 3 ancestry groups and overall, and makes no adjustment for the potential 
correlations between the SNPs or phenotypes tested. We adopted this strategy 
to ensure that the results reported are robust and to reduce the risk of spurious 
findings in out multi-stage trans-ancestry GWAS.

Associations of SNPs with phenotype were tested in each cohort sepa-
rately in single-marker tests, using regression analysis and an additive 
genetic model. Principal components and other study-specific factors were 
included as covariates to account for population substructure as described in  
Supplementary Table 2. Test statistics from each cohort were then corrected 
for their respective genomic control inflation factor to adjust for residual  
population substructure; the genomic control inflation factors are summarized 
in Supplementary Table 3. We then performed inverse variance meta-analysis  
of the results from the individual cohorts; meta-analysis was carried out 
among East Asian, European and South Asian populations separately. SNPs 
with information score <0.5 and minor allele frequency (MAF) <1% (weighted 
average across the cohorts) as well as sample size <50% of the maximum n for 
the phenotype were removed. We also removed SNPs showing heterogeneity 
of effect (Phet < 1 × 10−8) within any one of the three ancestry groups.

Finally, we carried out inverse variance meta-analyses of the results from 
the three ancestry groups. There was little evidence for inflation of test statis-
tics at SNPs not known to be associated with blood pressure phenotypes, and 
genomic control was not applied to the final meta-analysis results.

Identification of candidate SNPs. We identified all common genetic variants  
that were in LD with one or more of the sentinel SNPs at r2 >0.8. LD was 
calculated using pooled haplotypes for (i) European and East Asian samples 
in the 1000 Genomes Project data set (March 2012 release) and (ii) 168 South 
Asians with whole-genome sequence data. We annotated the sentinel SNPs 
and their proxies for regulatory regions (promoter and enhancer histone 
marks, DNase I hypersensitivity, protein binding and regulatory motifs) with 
HaploRegv2 (Broad Institute)24. VEP (Variant Effect Predictor) was used for 
the identification of transcription factor binding sites and nonsynonymous 
and splicing variants23. EpiExplorer and the UCSC Genome Browser were 
used to annotate CpG islands38.

Identification of candidate genes. We considered the nearest gene and any 
other gene located within 10 kb of the sentinel SNP to be candidates for medi-
ating the association with the blood pressure phenotype, along with any gene 
containing a SNP predicted to be nonsynonymous or affecting a splice site. 
We also examined the associations of the sentinel SNPs and their proxies with 
eQTL data from Zeller et al., consisting of data from circulating monocytes in 
1,490 unrelated individuals39. SNPs were tested for association with the expres-
sion of nearby genes (within 1 Mb of the sentinel SNP; P < 1 × 10−5). Finally, 
for significant SNP-methylation associations, the gene nearest the leading CpG 
site was also included as a candidate.

Association between sentinel SNPs, DNA methylation and phenotype. The 
associations of the 36 sentinel blood pressure SNPs with DNA methylation 
were first examined among 1,904 South Asian individuals from the LOLIPOP 
cohort. Bisulfite conversion of genomic DNA was performed using the EZ 
DNA methylation kit according to the manufacturer’s instructions (Zymo 
Research). Methylation of genomic DNA was quantified using the Illumina 
HumanMethylation450 array according to the manufacturer’s instructions. 
To facilitate the comparison of effects between CpG sites, methylation levels 
were z-transformed for all analyses; the scale for methylation is thus ‘standard 
deviations’. Whole-genome genotyping was carried out using the Illumina 
317, 610 or OmniExome microarray, with genomic DNA and according to the 
manufacturer’s instructions. SNPs and samples with low call rates (<98%) were 
excluded, as were SNPs with departure from Hardy-Weinberg equilibrium  
(P < 1 × 10−6). We used IMPUTE2 to predict (impute) unmeasured genotypes, 
using phased haplotypes from the whole-genome sequencing of 168 Indian 
Asians as a reference panel. 

The association of the sentinel blood pressure SNPs with cis DNA meth-
ylation (within 1 Mb) was tested by linear regression and an additive genetic 
model. We used an analytic strategy validated to reduce batch and other tech-
nical confounding effects in quantification of DNA methylation and adjusted 
for the white blood cell composition of blood40–42. We inferred statistical 
significance at P < 3.8 × 10−6 (Bonferroni correction for 13,275 SNP–CpG 
marker tests). We identified the leading CpG site (having the lowest P value 
for association with the sentinel SNP) at each blood pressure locus. We then 
carried out replication testing of the leading SNP-CpG associations among 
independent samples of South Asians (LOLIPOP, n = 1,373) and Europeans 
(LOLIPOP, n = 166; LifeLines Deep, n = 752; RS-BIOS, n = 762; KORA,  
n = 1,727; Supplementary Table 13).

Next, we quantified the relationship of the 28 leading CpG sites with blood 
pressure (Supplementary Tables 15 and 17). We then calculated the predicted 
effect of each SNP on blood pressure as the product of the regression coefficients 
between (i) the SNP and methylation (n = 6,684) and (ii) methylation and blood 
pressure (n = 6,757). We used linear regression and sign tests to compare the pre-
dicted effect of a SNP on blood pressure via methylation with the directly observed 
effect of this SNP on blood pressure in genome-wide association (Fig. 5).

Association of methylation with gene expression. The relationship between 
methylation and the expression of nearest genes was investigated in samples 
from LOLIPOP (n = 1,082; 907 South Asians and 175 Europeans) and the 
EnviroGenoMarkers project, a nested case-control study of incident breast 
cancer and B cell leukemia (n = 638 Europeans)43,44.

LOLIPOP. Details of the LOLIPOP cohort and methylation analysis have 
been provided above. Gene expression analysis was performed with the 
Illumina HumanHT-12 v4 BeadChip according to the manufacturer’s proto-
col. Background correction using negative controls was performed, and data 
were subsequently quantile normalized and log2 transformed. Linear models 
were fitted with log-transformed gene expression as the response variable and 
quantile normalized with β values (methylation), age, sex, the top 24 control 
probe principal components from methylation measurement and technical 
covariates related to the measurement of expression, including RNA integ-
rity number (RIN), RNA extraction batch, RNA conversion batch, scanning 
batch, array and array position. Analyses were conducted separately in South 
Asians and Europeans, followed by inverse variance–weighted meta-analysis. 
Calculations were performed using R, version 3.0.1.

EnviroGenoMarkers. Methylation and gene expression were quantified 
in the baseline blood samples collected 1–17 years before disease onset. 
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Transcriptomic profiles were obtained using the Agilent 4x44K Whole 
Human Genome microarray and subjected to extensive quality control proce-
dures45. DNA methylation profiles were obtained using the Illumina Infinium 
HumanMethylation450 BeadChip according to the manufacturer’s protocol. 
Bisulfite conversion was carried out using the Zymo EZ DNA Methylation kit. 
Probes that had missing values in more than 20% of the samples were excluded. 
We used linear regression to determine the association between methylation 
and gene transcription.

Enrichment of reported sentinel SNPs for association with DNA methyla-
tion. SNPs reported to be associated with phenotype were retrieved from the 
National Human Genome Research Institute (NHGRI) GWAS catalog. We 
considered studies with a sample size greater than 1,000 and retained SNPs 
with association P < 5 × 10−8. For simplicity, we removed data for Crohn’s  
disease and ulcerative colitis (both represented by inflammatory bowel dis-
ease) and obesity (represented by body mass index (BMI)). To account for 
biases due to LD, SNPs were pruned for each trait on the basis of a 1-Mb flank-
ing window (by consecutively selecting the SNP with the lowest P value and 
removing any variant within 1 Mb). Traits were then ranked by the number 
of significant associations, and the top 20 traits were tested for enrichment 
with methylation quantitative trait locus (methQTL) SNPs. For this pur-
pose, we derived 1 million sets of matched background SNPs for each trait.  
These background SNPs were chosen randomly but had properties matched to 
the associated SNPs (MAF ±2%, distance to gene ±10 kb, CpGs in cis ±200 kb).  
The proportion of cis methQTLs among the associated SNPs was then  
compared to the proportion among each of the 1 million sets of background 
SNPs, thereby deriving an empirical P value.

Cross-tissue methylation. Publicly available data (GSE48472) were down-
loaded from the Gene Expression Omnibus (GEO)46. Briefly, the data set 
consisted of 41 samples from blood, liver, muscle, pancreas, subcutaneous 
fat, omentum and spleen analyzed on the 450K methylation array. Data from 
the 28 CpG sites of interest were extracted and plotted using the heatmap.2 
function in the gplots library with R. Mean methylation levels for each CpG 
site across all samples within each tissue type were used to test for pairwise 
correlation between tissue types.

Relationship of sentinel SNPs with methylation in cord blood. We tested the 
relationship of sentinel SNPs with methylation for the 28 SNP-CpG pairs of 
interest in cord blood to investigate whether reverse causation might account 
for the observed associations between SNPs and methylation. This analysis 
was conducted in the GUSTO (Growing Up in Singapore Toward Healthy 
Outcomes) study47. Extracted DNA from cord blood (n = 237 samples) was 
genotyped using the Illumina OmniExpress + exome array, and DNA meth-
ylation profiling was performed using the Infinium HumanMethylation450 
BeadChip. Data were processed as described48. Both data sets have been 
described previously and are deposited in GEO under accessions GSE53816 
and GSE54445 (ref. 49). Genotype data were imputed with reference to 
HapMap 2 East Asian populations. SNPs with MAF <1% in GUSTO and CpGs 
that failed quality control were excluded from further analysis. Linear regres-
sion was used to quantify SNP-CpG associations, adjusting for sex.

Targeted resequencing for regional methylation. The 450K array assays 
<2% of the estimated ~30 million CpG sites in the human genome. To better 
describe the patterns of regional methylation, we carried out resequencing of 
the AMH locus in 168 samples. We used sequence capture and next-generation  
sequencing to assay 34 predicted CpG sites within 1 kb of the sentinel  
methylation marker at the AMH locus (chr. 19, 2,250,061–2,252,061). Primers 
were designed using Sequenom EpiDesigner BETA. Target DNA enrichment 

was carried out using the Fluidigm 48.48 Access Array IFC system, followed 
by PCR to attach sequence-specific adaptors and sample barcodes. Pooled 
sequencing was performed using the Illumina MiSeq platform (300-bp paired-
end runs). We then used Burrows-Wheeler Aligner to map the directional, 
paired-end Illumina sequencing reads to the reference genome (hg19 build) 
and quantified methylation from the frequencies of converted and uncon-
verted cytosine residues observed in reads mapped to each CpG site.

Fine mapping. To take advantage of any variation in LD structure between 
ancestry groups, we used MANTRA and varLD for further trans-ancestry  
fine mapping21,22. MANTRA, a Bayesian approach, allows for heteroge-
neity in effect sizes between ancestry or ethnic groups, which arises as a 
result of underlying differences in LD patterns but with a shared underlying 
causal variant across diverse populations that cannot be accommodated in  
fixed-effects meta-analysis. At each locus, 99% credible SNP sets were 
also constructed, which can be interpreted in a similar way to confidence  
intervals in a frequentist statistical framework21,50.

Genetic risk scores. We calculated weighted genetic risk scores for each of 
the 5 blood pressure phenotypes, using all 35 sentinel SNPs reaching genome-
wide significance or the 12 sentinel SNPs from the newly identified genetic 
loci; this yielded 10 genetic risk scores per person. Each score was calculated 
as the sum of the effect allele counts weighted by β coefficients for associa-
tion with the respective phenotype. To facilitate comparisons between genetic 
risk scores, each score was then standardized. We examined the relationships 
between genetic risk scores and phenotypes relevant to blood pressure in three 
cohorts—LOLIPOP, LifeLines and PREVEND—using regression analysis, 
including age and sex as covariates. Results were combined across cohorts by 
inverse variance meta-analysis where necessary. Where possible, we also used 
the in silico approach from T. Johnson for comparison8.
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