5 research outputs found

    Variation in the Composition and In Vitro Proinflammatory Effect of Urban Particulate Matter from Different Sites

    Full text link
    Spatial variation in particulate matter–related health and toxicological outcomes is partly due to its composition. We studied spatial variability in particle composition and induced cellular responses in Mexico City to complement an ongoing epidemiologic study. We measured elements, endotoxins, and polycyclic aromatic hydrocarbons in two particle size fractions collected in five sites. We compared the in vitro proinflammatory response of J774A.1 and THP‐1 cells after exposure to particles, measuring subsequent TNFα and IL‐6 secretion. Particle composition varied by site and size. Particle constituents were subjected to principal component analysis, identifying three components: C 1 (Si, Sr, Mg, Ca, Al, Fe, Mn, endotoxin), C 2 (polycyclic aromatic hydrocarbons), and C 3 (Zn, S, Sb, Ni, Cu, Pb). Induced TNFα levels were higher and more heterogeneous than IL‐6 levels. Cytokines produced by both cell lines only correlated with C 1 , suggesting that constituents associated with soil induced the inflammatory response and explain observed spatial differences. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:87‐97, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21471Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96321/1/jbt21471.pd

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Endothelial Progenitor Cells May Be Related to Major Amputation after Angioplasty in Patients with Critical Limb Ischemia

    No full text
    Background: Critical limb ischemia represents an advanced stage of peripheral arterial disease. Angioplasty improves blood flow to the limb; however, some patients progress irreversibly to lower limb amputation. Few studies have explored the predictive potential of biomarkers during postangioplasty outcomes. Aim: To evaluate the behavior of endothelial progenitor cells in patients with critical limb ischemia, in relation to their postangioplasty outcome. Methods: Twenty patients with critical limb ischemia, candidates for angioplasty, were enrolled. Flow-mediated dilation, as well as endothelial progenitor cells (subpopulations CD45+/CD34+/CD133+/CD184+ and CD45+/CD/34+/KDR[VEGFR-2]+ estimated by flow cytometry) from blood flow close to vascular damage, were evaluated before and after angioplasty. Association with lower limb amputation during a 30-day follow-up was analyzed. Results: Endothelial progenitor cells were related with flow-mediated dilation. A higher number of baseline EPCs CD45+CD34+KDR+, as well as an impaired reactivity of endothelial progenitor cells CD45+CD34+CD133+CD184+ after angioplasty, were observed in cases further undergoing major limb amputation, with a significant discrimination ability and risk (0.75, specificity 0.83 and RR 4.5 p +CD34+KDR+, as well as an impaired reactivity of subpopulation CD45+CD34+CD133+CD184+ after angioplasty, showed a predictive ability for major limb amputation in patients with critical limb ischemia

    Novel genes and sex differences in COVID-19 severity.

    Get PDF
    Here we describe the results of a genome-wide study conducted in 11 939 COVID-19 positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (p < 5x10-8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (p = 1.3x10-22 and p = 8.1x10-12, respectively), and for variants in 9q21.32 near TLE1 only among females (p = 4.4x10-8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (p = 2.7x10-8) and ARHGAP33 (p = 1.3x10-8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, p = 4.1x10-8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥ 60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided
    corecore