9 research outputs found

    Deep Learning in Single-Cell Analysis

    Full text link
    Single-cell technologies are revolutionizing the entire field of biology. The large volumes of data generated by single-cell technologies are high-dimensional, sparse, heterogeneous, and have complicated dependency structures, making analyses using conventional machine learning approaches challenging and impractical. In tackling these challenges, deep learning often demonstrates superior performance compared to traditional machine learning methods. In this work, we give a comprehensive survey on deep learning in single-cell analysis. We first introduce background on single-cell technologies and their development, as well as fundamental concepts of deep learning including the most popular deep architectures. We present an overview of the single-cell analytic pipeline pursued in research applications while noting divergences due to data sources or specific applications. We then review seven popular tasks spanning through different stages of the single-cell analysis pipeline, including multimodal integration, imputation, clustering, spatial domain identification, cell-type deconvolution, cell segmentation, and cell-type annotation. Under each task, we describe the most recent developments in classical and deep learning methods and discuss their advantages and disadvantages. Deep learning tools and benchmark datasets are also summarized for each task. Finally, we discuss the future directions and the most recent challenges. This survey will serve as a reference for biologists and computer scientists, encouraging collaborations.Comment: 77 pages, 11 figures, 15 tables, deep learning, single-cell analysi

    ESPnet-ST-v2: Multipurpose Spoken Language Translation Toolkit

    Full text link
    ESPnet-ST-v2 is a revamp of the open-source ESPnet-ST toolkit necessitated by the broadening interests of the spoken language translation community. ESPnet-ST-v2 supports 1) offline speech-to-text translation (ST), 2) simultaneous speech-to-text translation (SST), and 3) offline speech-to-speech translation (S2ST) -- each task is supported with a wide variety of approaches, differentiating ESPnet-ST-v2 from other open source spoken language translation toolkits. This toolkit offers state-of-the-art architectures such as transducers, hybrid CTC/attention, multi-decoders with searchable intermediates, time-synchronous blockwise CTC/attention, Translatotron models, and direct discrete unit models. In this paper, we describe the overall design, example models for each task, and performance benchmarking behind ESPnet-ST-v2, which is publicly available at https://github.com/espnet/espnet.Comment: There will be some major updates to the paper. Thus, withdraw

    Total-Body Dynamic Reconstruction and Parametric Imaging on the uEXPLORER.

    No full text
    The world's first 194-cm-long total-body PET/CT scanner (uEXPLORER) has been built by the EXPLORER Consortium to offer a transformative platform for human molecular imaging in clinical research and health care. Its total-body coverage and ultra-high sensitivity provide opportunities for more accurate tracer kinetic analysis in studies of physiology, biochemistry, and pharmacology. The objective of this study was to demonstrate the capability of total-body parametric imaging and to quantify the improvement in image quality and kinetic parameter estimation by direct and kernel reconstruction of the uEXPLORER data. Methods: We developed quantitative parametric image reconstruction methods for kinetic analysis and used them to analyze the first human dynamic total-body PET study. A healthy female subject was recruited, and a 1-h dynamic scan was acquired during and after an intravenous injection of 256 MBq of 18F-FDG. Dynamic data were reconstructed using a 3-dimensional time-of-flight list-mode ordered-subsets expectation maximization (OSEM) algorithm and a kernel-based algorithm with all quantitative corrections implemented in the forward model. The Patlak graphical model was used to analyze the 18F-FDG kinetics in the whole body. The input function was extracted from a region over the descending aorta. For comparison, indirect Patlak analysis from reconstructed frames and direct reconstruction of parametric images from the list-mode data were obtained for the last 30 min of data. Results: Images reconstructed by OSEM showed good quality with low noise, even for the 1-s frames. The image quality was further improved using the kernel method. Total-body Patlak parametric images were obtained using either indirect estimation or direct reconstruction. The direct reconstruction method improved the parametric image quality, having a better contrast-versus-noise tradeoff than the indirect method, with a 2- to 3-fold variance reduction. The kernel-based indirect Patlak method offered image quality similar to the direct Patlak method, with less computation time and faster convergence. Conclusion: This study demonstrated the capability of total-body parametric imaging using the uEXPLORER. Furthermore, the results showed the benefits of kernel-regularized reconstruction and direct parametric reconstruction. Both can achieve superior image quality for tracer kinetic studies compared with the conventional indirect OSEM for total-body imaging
    corecore