81 research outputs found

    Geodetector-Based Livability Analysis of Potential Resettlement Locations for Villages in Coal Mining Areas on the Loess Plateau of China

    Get PDF
    The resettlement of residents within the construction area of large projects is an important task related to people’s welfare. Livability is often used as an evaluation indicator when selecting resettlement areas. According to the results of the China Development Plan and 300 questionnaires, the human settlement factors that constitute livability include the living environment, ecological health, infrastructure, public facilities, and economic development, data on which can only be obtained from existing villages, and therefore cannot be used to directly assess the livability of potential resettlement areas. In fact, these human settlement factors are formed by the complex influences of numerous geographical factors (e.g., slope, slope orientation, accessibility, etc.), and it is scientific and reliable to use these geographical factors, which can be determined for each location, to carry out the livability assessment of potential resettlement areas. To this end, this paper takes the village resettlement project in the Dafosi coal mining area on the Loess Plateau of China as an example, calculates the livability scores of the existing villages around the coal mine using the entropy weighting method, and quantitatively analyzes the relationship between the livability scores and the selected geographic factors using a spatial correlations analysis method named Geodetector. It further uses the weighted overlayed function to superimpose the main geographic factors in order to obtain a livability grading map of the potential resettlement area. The results were successfully applied to the above resettlement project. We also verified the accuracy of this paper’s assessment method by adding 184 natural villages, and the method can be applied to other types of resettlement area livability assessment

    Research on the Growth of Internet SMEs Based on Entropy Theory

    Get PDF
    With the rapid development of Internet technology, Internet companies rise rapidly in all areas of the society, and have become a major economic way and also a new economic growth point in the modern era. This heralds the coming of network economy era. It is essential for both managers and investors to evaluate the growth of a listed company. Therefore, academics in China have been giving a lot of attention on the study about the growth of thoseInternet enterprises. First, on the basis of enterprise growth theory and entropy theory, this paper is aimed at recognizing the factors influencing the development of small and medium-sized Internet enterprises by analyzing questionnaires. Then, the concept of entropy is proposed based on the entropy theory. This research provides a new method for growth analysis and also has a far-reaching significance for the development of the Internet SME

    Overexpression of long non-coding RNA NORAD promotes invasion and migration in malignant melanoma via regulating the MIR-205-EGLN2 pathway.

    Get PDF
    Growing evidence suggests that long non-coding RNAs NORAD and miR-205 play a significant role in regulating cancer progression and metastasis. In this study, high expression of NORAD was firstly observed in melanoma tissues and human malignant melanoma cell lines, our aim was to study the interaction of them in the process of invasion and migration of malignant melanoma cells. NORAD, miR-205, and EGLN2 mRNA level in MM cells was detected by qRT-PCR. In situ hybridization (ISH) was performed to detect NORAD expression in MM tissues specimens. Effects of NORAD and miR-205 on Prolyl hydroxylase 2 (EGLN2) expression was explored by western blot in MM cells line. Dual-luciferase reporter assay was performed to verify the interaction relationship between NORAD and miR-205, as well as, miR-205 and EGLN2. Transwell assay was conducted to explore the effects of NORAD and miR-205 in vitro. Xenografts in nude mice experiment were used to confirm the role of NORAD and miR-205 in vivo. In vitro, NORAD knockdown significantly inhibited migration and invasion of malignant melanoma cells and elevated the expression of miR-205, there was an interaction between miR-205 and NORAD in the RNA-induced silencing complex. Upregulation of miR-205 induced significant inhibition of migratory and invasive ability compared with the scrambled control. However, downregulating NORAD largely reversed this effect. Furthermore, the regulatory effects of miR-205 on EGLN2 levels and the induction of endoplasmic reticulum stress were reversed by NORAD. In vivo, deletion of miR-205 induced tumor growth in nude mice. NORAD may play critical roles in tumorigenesis and progression of malignant melanoma by regulating of the miR-205-EGLN2 pathway, and may serve as a new therapeutic target

    GEE-Based Ecological Environment Variation Analysis under Human Projects in Typical China Loess Plateau Region

    Get PDF
    The China Loess Plateau (CLP) is a unique geomorphological unit with abundant coal resources but a fragile ecological environment. Since the implementation of the Western Development plan in 2000, the Grain for Green Project (GGP), coal mining, and urbanization have been extensively promoted by the government in the CLP. However, research on the influence of these human projects on the ecological environment (EE) is still lacking. In this study, we investigated the spatial–temporal variation of EE in a typical CLP region using a Remote Sensing Ecological Index (RSEI) based on the Google Earth Engine (GEE). We obtained a long RSEI time series from 2002–2022, and used trend analysis and rescaled range analysis to predict changing trends in EE. Finally, we used Geodetector to verify the influence of three human projects (GGP, coal mining, and urbanization). Our results show that GGP was the major driving factor of ecological changes in the typical CLP region, while coal mining and urbanization had significant local effects on EE. Our research provides valuable support for ecological protection and sustainable social development in the relatively underdeveloped region of northwest China

    Stock Volatility Prediction Based on Transformer Model Using Mixed-Frequency Data

    Full text link
    With the increasing volume of high-frequency data in the information age, both challenges and opportunities arise in the prediction of stock volatility. On one hand, the outcome of prediction using tradition method combining stock technical and macroeconomic indicators still leaves room for improvement; on the other hand, macroeconomic indicators and peoples' search record on those search engines affecting their interested topics will intuitively have an impact on the stock volatility. For the convenience of assessment of the influence of these indicators, macroeconomic indicators and stock technical indicators are then grouped into objective factors, while Baidu search indices implying people's interested topics are defined as subjective factors. To align different frequency data, we introduce GARCH-MIDAS model. After mixing all the above data, we then feed them into Transformer model as part of the training data. Our experiments show that this model outperforms the baselines in terms of mean square error. The adaption of both types of data under Transformer model significantly reduces the mean square error from 1.00 to 0.86.Comment: Accepted by the 7th APWeb-WAIM International Joint Conference on Web and Big Data. (APWeb 2023

    Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9

    Get PDF
    AbstractWe developed an adenovirus-based CRISPR/Cas9 system for gene editing in vivo. In the liver, we demonstrated that the system could reach the level of tissue-specific gene knockout, resulting in phenotypic changes. Given the wide spectrum of cell types susceptible to adenoviral infection, and the fact that adenoviral genome rarely integrates into its host cell genome, we believe the adenovirus-based CRISPR/Cas9 system will find applications in a variety of experimental settings

    Comparison analysis of microRNAs in response to EV71 and CA16 infection in human bronchial epithelial cells by high-throughput sequencing to reveal differential infective mechanisms

    Get PDF
    AbstractHand, foot, and mouth disease (HFMD) mainly caused by Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) infections which presented significantly different clinical manifestations. Nevertheless, the factors underlying these differences remain unclear. Recently, the functions of microRNAs (miRNAs) in pathogen-host interactions have been highlighted. Here, we performed comprehensive miRNA profiling in EV71- and CA16-infected human bronchial epithelial (16HBE) cells at multiple time points using high-throughput sequencing. The results showed that 154 known and 47 novel miRNAs exhibited remarkable differences in expression. Of these, 65 miRNAs, including 58 known and 7 novel miRNAs, presented opposite trends in EV71- and CA16-infected samples. Subsequently, we mainly focused on the 56 known differentially expressed miRNAs by further screening for targets prediction. GO and pathway analysis of these targets demonstrated that 18 biological processes, 7 molecular functions, 1 cellular component and 123 pathways were enriched. Among these pathways, Cadherin signalling pathway, Wnt signalling pathway and angiogenesis showed significant alterations. The regulatory networks of these miRNAs with predicted targets, GOs, pathways and transcription factors were determined, which suggested that miRNAs displayed intricate regulatory mechanisms during the infection phase. Consequently, we specifically analysed the hierarchical GO categories of the predicted targets involved in adhesion. The results indicated that the distinct changes induced by EV71 and CA16 infection may be partly linked to airway epithelial barrier function. Taken together, our data provide useful insights that help elucidate the different host-pathogen interactions following EV71 and CA16 infection and might offer novel therapeutic targets for these infections

    Chromosome-level genome assembly of a high-altitude-adapted frog (Rana kukunoris) from the Tibetan plateau provides insight into amphibian genome evolution and adaptation

    Get PDF
    Background The high-altitude-adapted frog Rana kukunoris, occurring on the Tibetan plateau, is an excellent model to study life history evolution and adaptation to harsh high-altitude environments. However, genomic resources for this species are still underdeveloped constraining attempts to investigate the underpinnings of adaptation. Results The R. kukunoris genome was assembled to a size of 4.83 Gb and the contig N50 was 1.80 Mb. The 6555 contigs were clustered and ordered into 12 pseudo-chromosomes covering similar to 93.07% of the assembled genome. In total, 32,304 genes were functionally annotated. Synteny analysis between the genomes of R. kukunoris and a low latitude species Rana temporaria showed a high degree of chromosome level synteny with one fusion event between chr11 and chr13 forming pseudo-chromosome 11 in R. kukunoris. Characterization of features of the R. kukunoris genome identified that 61.5% consisted of transposable elements and expansions of gene families related to cell nucleus structure and taste sense were identified. Ninety-five single-copy orthologous genes were identified as being under positive selection and had functions associated with the positive regulation of proteins in the catabolic process and negative regulation of developmental growth. These gene family expansions and positively selected genes indicate regions for further interrogation to understand adaptation to high altitude. Conclusions Here, we reported a high-quality chromosome-level genome assembly of a high-altitude amphibian species using a combination of Illumina, PacBio and Hi-C sequencing technologies. This genome assembly provides a valuable resource for subsequent research on R. kukunoris genomics and amphibian genome evolution in general.Peer reviewe

    Terlipressin May Decrease In-Hospital Mortality of Cirrhotic Patients with Acute Gastrointestinal Bleeding and Renal Dysfunction: A Retrospective Multicenter Observational Study

    Get PDF
    Acute gastrointestinal bleeding (GIB) rapidly reduces effective blood volume, thereby precipitating acute kidney injury (AKI). Terlipressin, which can induce splanchnic vasoconstriction and increase renal perfusion, has been recommended for acute GIB and hepatorenal syndrome in liver cirrhosis. Thus, we hypothesized that terlipressin might be beneficial for cirrhotic patients with acute GIB and renal impairment. In this Chinese multi-center study, 1644 cirrhotic patients with acute GIB were retrospectively enrolled. AKI was defined according to the International Club of Ascites (ICA) criteria. Renal dysfunction was defined as serum creatinine (sCr) > 133 μmol/L at admission and/or any time point during hospitalization. Incidence of renal impairment and in-hospital mortality were the primary end-points. The incidence of any stage ICA-AKI, ICA-AKI stages 1B, 2, and 3, and renal dysfunction in cirrhotic patients with acute GIB was 7.1%, 1.8%, and 5.0%, respectively. The in-hospital mortality was significantly increased by renal dysfunction (14.5% vs. 2.2%, P < 0.001) and ICA-AKI stages 1B, 2, and 3 (11.1% vs. 2.8%, P = 0.011), but not any stage ICA-AKI (5.7% vs. 2.7%, P = 0.083). The in-hospital mortality was significantly decreased by terlipressin in patients with renal dysfunction (3.6% vs. 20.0%, P = 0.044), but not in those with any stage ICA-AKI (4.5% vs. 6.0%, P = 0.799) or ICA-AKI stages 1B, 2, and 3 (0.0% vs. 14.3%, P = 0.326). Renal dysfunction increased the in-hospital mortality of cirrhotic patients with acute GIB. Terlipressin might decrease the in-hospital mortality of cirrhotic patients with acute GIB and renal dysfunction. NCT03846180 ( https://clinicaltrials.gov )

    The anaphase promoting complex impacts repair choice by protecting ubiquitin signalling at DNA damage sites

    Get PDF
    Double-strand breaks (DSBs) are repaired through two major pathways, homology-directed recombination (HDR) and non-homologous end joining (NHEJ). While HDR can only occur in S/G2, NHEJ can happen in all cell cycle phases (except mitosis). How then is the repair choice made in S/G2 cells? Here we provide evidence demonstrating that APCCdh1 plays a critical role in choosing the repair pathways in S/G2 cells. Our results suggest that the default for all DSBs is to recruit 53BP1 and RIF1. BRCA1 is blocked from being recruited to broken ends because its recruitment signal, K63-linked poly-ubiquitin chains on histones, is actively destroyed by the deubiquitinating enzyme USP1. We show that the removal of USP1 depends on APCCdh1 and requires Chk1 activation known to be catalysed by ssDNA-RPA-ATR signalling at the ends designated for HDR, linking the status of end processing to RIF1 or BRCA1 recruitment.We thank S.-Y. Lin (MD Anderson Cancer Center) for cell lines; J. Rosen (Baylor College of Medicine) for reagents; H. Masai (Tokyo Metropolitan Institute of Medical Science) for U2OS-Fucci cell line; D. Durocher (University of Toronto) for HeLa-Fucci cell line; E. Citterio (Netherlands Cancer Institute) for GFP-USP3 construct; M.S.Y. Huen (The University of Hong Kong) for RNF168 antibody. This work was performed with facilities and instruments in the Imaging Core of National Center for Protein Science (Beijing), the Cytometry and Cell Sorting Core at Baylor College of Medicine with funding from the NIH (P30 AI036211, P30 CA125123 and S10 RR024574), the Integrated Microscopy Core at Baylor College of Medicine with funding from the NIH (HD007495, DK56338 and CA125123), and the John S. Dunn Gulf Coast Consortium for Chemical Genomics. We also thank other members of the Zhang lab for helpful discussion and support. This work was supported in part by an international collaboration grant (# 2013DFB30210) and a 973 Project grant (# 2013CB910300) from Chinese Minister of Science and Technology, in part by a Chinese National Natural Science Foundation grant (# 81171920), in part by a grant from The Committee of Science and Technology of Beijing Municipality, China (# Z141100000214015), and in part by NIH grants CA116097 and CA122623 to P.Z. J.J. is supported by grants from National Institutes of Health (R01GM102529) and the Welch Foundation (AU-1711). S.H. is supported by grants (# 81272488 and 81472795) from Chinese National Natural Science Foundation. Y.Z. is supported by grants from the National Natural Scientific Foundation of China (No. 81430055), Programs for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R13).S
    • …
    corecore