1,189 research outputs found
Complements or substitutes? The effect of ETFs on other managed funds
We examine the complementary and substitute effects of exchange-traded funds (ETFs) and two other investment vehicles: mutual funds (MFs) and closed-end funds (CEFs). Focusing on the capital flow into investment vehicles, we find a complementary effect between ETFs and MFs, and substitution effect between ETFs and CEFs. The complementarity and substitution effect remains robust when focusing on subsamples with different market conditions and fund management styles. We present further evidence that past inflows of the same investment vehicle are significantly correlated with current inflows. These findings have implications to both investors and regulators in understanding the interdependence of investment vehicles.</p
Recommended from our members
Flexible transbronchial optical frequency domain imaging smart needle for biopsy guidance
Transbronchial needle aspiration (TBNA) is a procedure routinely performed to diagnose peripheral pulmonary lesions. However, TBNA is associated with a low diagnostic yield due to inappropriate needle placement. We have developed a flexible transbronchial optical frequency domain imaging (TB-OFDI) catheter that functions as a “smart needle” to confirm the needle placement within the target lesion prior to biopsy. The TB-OFDI smart needle consists of a flexible and removable OFDI catheter (430 µm dia.) that operates within a standard 21-gauge TBNA needle. The OFDI imaging core is based on an angle polished ball lens design with a working distance of 160 µm from the catheter sheath and a spot size of 25 µm. To demonstrate the potential of the TB-OFDI smart needle for transbronchial imaging, an inflated excised swine lung was imaged through a standard bronchoscope. Cross-sectional and longitudinal OFDI results reveal the detailed network of alveoli in the lung parenchyma suggesting that the TB-OFDI smart needle may be a useful tool for guiding biopsy acquisition to increase the diagnostic yield
Mass-losing accretion discs around supermassive black holes
We study the effects of outflow/wind on the gravitational stability of
accretion discs around supermassive black holes using a set of analytical
steady-state solutions. Mass-loss rate by the outflow from the disc is assumed
to be a power-law of the radial distance and the amount of the energy and the
angular momentum which are carried away by the wind are parameterized
phenomenologically. We show that the mass of the first clumps at the
self-gravitating radius linearly decreases with the total mass-loss rate of the
outflow. Except for the case of small viscosity and high accretion rate,
generally, the self-gravitating radius increases as the amount of mass-loss by
the outflow increases. Our solutions show that as more angular momentum is lost
by the outflow, then reduction to the mass of the first clumps is more
significant.Comment: Accepted for publication in Astrophysics & Space Scienc
Multi-timescale Solar Cycles and the Possible Implications
Based on analysis of the annual averaged relative sunspot number (ASN) during
1700 -- 2009, 3 kinds of solar cycles are confirmed: the well-known 11-yr cycle
(Schwabe cycle), 103-yr secular cycle (numbered as G1, G2, G3, and G4,
respectively since 1700); and 51.5-yr Cycle. From similarities, an
extrapolation of forthcoming solar cycles is made, and found that the solar
cycle 24 will be a relative long and weak Schwabe cycle, which may reach to its
apex around 2012-2014 in the vale between G3 and G4. Additionally, most Schwabe
cycles are asymmetric with rapidly rising-phases and slowly decay-phases. The
comparisons between ASN and the annual flare numbers with different GOES
classes (C-class, M-class, X-class, and super-flare, here super-flare is
defined as X10.0) and the annal averaged radio flux at frequency of 2.84
GHz indicate that solar flares have a tendency: the more powerful of the flare,
the later it takes place after the onset of the Schwabe cycle, and most
powerful flares take place in the decay phase of Schwabe cycle. Some
discussions on the origin of solar cycles are presented.Comment: 8 pages, 4 figure
Trapped two-component Fermi gases with up to six particles: Energetics, structural properties, and molecular condensate fraction
We investigate small equal-mass two-component Fermi gases under external
spherically symmetric confinement in which atoms with opposite spins interact
through a short-range two-body model potential. We employ a non-perturbative
microscopic framework, the stochastic variational approach, and determine the
system properties as functions of the interspecies s-wave scattering length a,
the orbital angular momentum L of the system, and the numbers N1 and N2 of
spin-up and spin-down atoms (with N1-N2 =0 or 1 and N < 7, where N=N1+N2). At
unitarity, we determine the energies of the five- and six-particle systems for
various ranges r0 of the underlying two-body model potential and extrapolate to
the zero-range limit. These energies serve as benchmark results that can be
used to validate and assess other numerical approaches. We also present
structural properties such as the pair distribution function and the radial
density. Furthermore, we analyze the one-body and two-body density matrices. A
measure for the molecular condensate fraction is proposed and applied. Our
calculations show explicitly that the natural orbitals and the momentum
distributions of atomic Fermi gases approach those characteristic for a
molecular Bose gas if the s-wave scattering length a, a>0, is sufficiently
small.Comment: 21 pages, 15 figures; accepted for publication in special issue of
CRA
LRRK2 A419V is not associated with Parkinson's disease in different Chinese populations
10.1371/journal.pone.0036123PLoS ONE77
- …