14 research outputs found

    Serotonin and serotonin receptors in neural stem and progenitor cell proliferation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Fluorogenic probes to monitor cytosolic phospholipase A(2) activity

    No full text
    10.1039/c6cc09305aCHEMICAL COMMUNICATIONS53111813-181

    A synchrotron X-ray imaging strategy to map large animal brains

    No full text
    Mapping the large neural networks of animal and human brains is a fundamental but so far elusive task, because of the massive amount of data and the consequent prohibitively long image taking and processing times. We developed an effective strategy called "AXON" (Accelerated X-ray Observation of Neurons) to solve this problem. AXON can achieve comprehensive whole-brain mapping within a reasonable time by combining fast image taking and processing, plus two other critical performances: three-dimensional (3D) imaging with high and isotropic spatial resolution, and multi-scale resolution. We successfully tested this strategy with coordinated experiments at four synchrotron facilities in Japan, Taiwan, Singapore and Korea on two animal models, Drosophila and mouse. Its performances notably allowed full 3D mapping of the Drosophila brain in a few days. With reasonable improvements, AXON can deliver full mapping of large animal and human brains on a realistic time scale of a few years

    Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study in multiple populations

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore