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SUMMARY 
 

Serotonin (5-HT) is a neurotransmitter that is also involved in embryonic 

development. Its imbalance is one of the known causes of pathological 

condition of depression. Treatment of depression using antidepressants is 

found to increase neural stem and progenitor cell (NSPC) proliferation and 

ablation of NSPC proliferation ablates the behavioural effects of 

antidepressants in rodents, thereby suggesting that proliferation and 

neurogenesis of NSPCs are essential to the effects of antidepressants. Many 

antidepressants increase availability of the serotonin by acting as selective 

serotonin reuptake inhibitors.  

 

This thesis examines various aspects of serotonergic systems to determine 

the regulatory mechanisms by which serotonergic systems control NSPC 

proliferation. Serotonergic fibres are found in the neurogenic regions of the 

brain, namely the subgranular zone of the dentate gyrus and the 

subventricular zone of the lateral ventricles, suggesting the likelihood of direct 

serotonergic control of NSPC proliferation. The notion of direct serotonergic 

control was further reinforced by findings that exogenous addition of 5-HT to 

cultured NSPCs triggered an increase in NSPC proliferation and that NSPCs 

express a host of serotonin receptors.. 

 

Of the many 5-HT receptor subtypes that were found to be expressed in the 

NSPCs, this thesis focuses on 5-HT1A, 5-HT3 and 5-HT7 receptors. Previous 

reports suggested that the 5-HT1A receptor is one of the main receptor 

subtypes involved in the antidepressant-induced increase in NSPC 
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proliferation. However, the identification of new subtypes of serotonin 

receptors and the discovery of the cross-subtype activation of the 5-HT1A 

receptor agonist, 8-OH-DPAT, raises the possibility that the reported increase 

in NSPC proliferation may not be specific to 5-HT1A receptor activation. 

Despite the 5-HT1A receptor being previously reported as the site of action for 

5-HT-induced NSPC proliferation, in this thesis it is shown that the selective 5-

HT1A receptor agonist, 8-OH-PIPAT, failed to increase the NSPC proliferation 

whereas 8-OH-DPAT, a partial agonist for both 5-HT1A and 5-HT7 receptors, 

was able to increase NSPC proliferation. Moreover, AS-19, a selective 5-HT7 

receptor agonist, was found to increase the NSPC proliferation in culture 

suggesting the likelihood that 8-OH-DPAT treatment increases NSPC 

proliferation through 5-HT7 receptor activation. NSPCs were also found to 

express functional 5-HT3A and 5HT3B receptors and direct treatment with 5-

HT3 receptor selective antagonists was also able to increase NSPC 

proliferation both in vitro and in vivo, which supports the notion that 

antidepressants may increase NSPC proliferation through blockade of 5-HT3 

receptors.  

 

Besides 5-HT receptors, 5-HT biosynthesis was also examined. Some studies 

show that polymorphisms in the 5-HT biosynthesis enzyme, tryptophan 

hydroxylase (TPH), affect antidepressant treatment outcome suggesting that 

endogenous levels of 5-HT are one of the confounding factors in treatment of 

depression. In this thesis, it was found that TPH1 and TPH2 are expressed by 

NSPCs suggesting the possibility of self-regulation of proliferation. TPH1 

expression dropped upon NSPC differentiation showing NSPC specific 
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expression. Reduction in NSPC proliferation in TPH1 KO mice further pointed 

to the role of TPH1 in regulating and maintaining NSPC proliferation.  

 

Taken together, NSPC proliferation may be regulated by the direct influence 

of serotonergic systems. To assist research on NSPCs, a method of 

cryopreservation of cultured NSPCs through serum and protein-free 

vitrification has also been optimized in this thesis.  
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1. INTRODUCTION 

 

1.1 Neural stem/progenitor cells and neurogenesis 

 

The discovery of self-renewable, multipotent or totipotent stem cells has opened 

up an exciting field of research in regenerative medicine. This is especially true 

for embryonic stem cell research, which promises to offer a host of possibilities 

from whole organ regeneration to cell transplantation (Macchiarini et al., 2008; 

Keirstead et al. 2005). However, the difficulty of generating specific cell types 

from embryonic stem cells has brought researchers to look at a less totipotent, 

more restricted type of stem cells, termed adult stem cells. These stem cells, 

such as haemopoietic, mesenchymal and neural stem cells, have more limited 

differentiation capability which allows them to only produce certain cell types that 

belong to the niche in which they are found (Watt and Driskell, 2010). One of the 

most interesting cell types among the newly discovered adult stem cells is neural 

stem and progenitor cells (NSPCs) due to it had long been thought that the brain 

was unable to generate any new cells upon the completion of postnatal 

development and the dogma that, upon brain damage, there will be no hope for 

recovery had long been accepted (Ramon y Cajal, 1928). 
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1.1.1 NSPCs – historical prespective 

 

The first identification of the presence of NSPCs in the brain comes from the 

discovery through thymidine-H3 incorporation into the dividing cells that the cells 

in certain regions of the brain can undergo proliferation and generate new 

neurons in rodents (Atlman, 1962). This paper is perhaps one of the earliest 

identifications of neurogenesis in the brain. However, the results were met with 

skepticism as others failed to find the same radionucleotide incorporation in the 

neurons (Schultze and Oehlert, 1960; Messier and Leblond, 1960). Later, more 

evidence followed from the discovery of similar phenomenon in other animals 

such as cats and song birds (Atlman and Chorover, 1963; Paton and Nottebohm, 

1984). These discoveries did not generate much attention until Eriksson et al. 

(1998) discovered that these NSPCs are also found in the human brain and 

these cells are able to give rise to new neurons. This shows that the brain is still 

plastic in nature and brings forth the possibility that there are hopes of using the 

NSPCs in therapeutic cell transplantation. This hope is further enhanced by the 

discovery of that such NSPCs can propagate indefinitely, which suggests the life-

long presence of NSPCs in adult brain (Reynold and Weiss, 1992; Kilpatrick and 

Bartlett, 1993).  

 

In the adult brain, NSPCs are not widespread and are found to be restricted to 

only a few regions of the brain. The two main regions are the subependymal 

layer of the lateral ventricle walls covering the striatum (termed the subventricular 
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zone, SVZ) and the inner  granular cell layer of the dentate gyrus of the 

hippocampus (termed the subgranular zone, SGZ) (Lois and Alvarez-Buylla, 

1993; Eriksson et al., 1998). Other regions of the central nervous system (CNS) 

that have been suggested to also contain NSPCs are the cerebellum and the 

spinal cord (Lee et al., 2005; Dromard et al., 2008). The presence of the NSPCs 

in these areas represents the need for continuous replacement or generation of 

new cells in these regions. For the NSPCs from the SVZ region, they are actively 

proliferating cells, which will migrate along the rostral migratory stream (RMS) 

along the surface of the lateral ventricles and ended up in the olfactory bulb, 

differentiating into interneurons (Gage, 2000). The NSPCs in the SGZ however, 

will mature and move radially into the granule cell layer where they will 

differentiate into the granule cells (Seri et al., 2004). 

 

There has been an interesting suggestion that the definition of neurogenic 

regions does not only encompass the areas that contain NSPCs but also the 

presence of the microenvironments that consist of cell-to-cell interactions and 

diffusible factors that promote neural development of the NSPCs and also the 

neurogenic potential that is capable of supporting transplanted NSPCs. This 

interpretation has lead to the suggestion of classifying the neurogenic regions 

into those supporting: (1) constitutive neurogenesis, where the larger population 

of NSPCs were found and where there are regions of active cell proliferation and 

neurogenesis; (2) potential neurogenesis, where smaller numbers of NSPCs 

have been isolated such as the rostro-caudal region of the anterior SVZ along 
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the neuraxis to the spinal cord and the dentate gyrus of the hippocampus; and 

(3) reactive neurogenesis, where neurogenesis can be induced by damage to the 

brain regions such as in the cortex and hippocampal CA1 region (Ortega-Perez 

et al., 2007). 

 

1.1.2 Identification of the neurogenic niche 

 

By definition, the NSPCs are cells that are capable of self-renewal throughout the 

lifetime of the organism and capable of mutlipotent differentiation into neurons, 

astrocytes and oligodendrocytes (Gage, 2000). However, due to the lack of 

unambiguous markers, single NSPC is yet to be identified in the adult neurogenic 

niches (Morshead et al., 1994). The general consensus among researchers is 

that there is a lack of an unique repertoire of markers that can be used as stem 

cell markers but current identification methods use a diverse set of markers that 

were shared with the non-stem cells. Therefore, up to this point, only 

subpopulations of cells can be identified and they may differ in characteristics 

such as antigenic profile, cell cycle stages, self renewal potential and 

differentiation potential. Based on the current established markers commonly 

used, neurogenesis has been broadly classified into a few stages. 

 

 4



1.1.3 Stages of neurogenesis 

 

1.1.3.1 Quiescent neural progenitors 

 

The quiescent neural progenitors, frequently known as the “true” neural stem 

cells, are the most primitive cell population in the neural stem cell niche (Bull and 

Bartlett, 2005; Seaberg and van der Kooy, 2002). In the hippocampal formation, 

they are glial fibrillary acidic protein (GFAP) and nestin expressing cells with 

triangular somata located at the SGZ and processes terminating in the molecular 

layer of the dentate gyrus (Mignone et al., 2004). Due to their expression of 

GFAP, there have been suggestions that the neural progenitors arise from glial 

lineage (Krisegstein and Alvarez-Buylla, 2009). However, these cells do not 

express S100β, which is a marker for mature astrocytes (Steiner et al., 2004). 

These cells are described as quiescent due to their low proliferation rate, with 

less than 2% of the cells being labeled by a 2hr BrdU pulse (Kronenberg et al., 

2003; Seri et al., 2001). These quiescent neural precursor cells undergo 

asymmetric division, suggesting that they maintain the primitive precursor pool 

and were found to generate transit amplifying precursor cells upon mitosis 

(Encinas et al. 2006).  
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1.1.3.2 Transit amplifying neural progenitors 

 

As described in the previous section, the transit amplifying neural progenitors 

arise from the asymmetric division of the quiescent neural progenitors. They are 

small oval shaped cells, typically around 10µm in diameter, found in both the 

SGZ and SVZ (Encinas et al., 2006; Doetsch et al., 2002). They are identified by 

nestin and Sox2 expression, but not GFAP or vimentin expression, as compared 

to quiescent neural progenitors (Brazel et al., 2005; Ellis et al., 2004; Kawaguchi 

et al., 2001). These cells are highly proliferative as indicated by their ability for 

BrdU incorporation. About 20-25% of the cells are labeled in a 2hr BrdU pulse 

(Encinas et al., 2006). However, they only have a capacity for a limited number of 

divisions and will not remain in this stage indefinitely (Basak and Taylor, 2009). 

These cells are found usually in clusters along the SGZ region of the dentate 

gyrus and in the SVZ regions of the lateral ventricles.  

 

1.1.3.3 Neuroblast – type 1 and type 2 

 

This class of cells arises from the transit amplifying neural progenitors. They 

cease to express nestin and Sox2 and express doublecortin (Dcx) and Poly-

Sialated Neural Cell Adhesion Molecule (PSA-NCAM). They also started to 

express immature neuron markers such as β-tubulin (Tuj1) (Roskams et al., 

1998). Typically, these cells are post-mitotic cells which are morphologically 

similar to the transit amplifying cells with less than 1% being labeled with BrdU 
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(Seri et al., 2004). Most of the neuroblasts are non-mitotic therefore it is likely 

that  BrdU labeling observed is carry forward from the transit amplifying neural 

progenitor proliferation and maturation into neuroblasts. The neuroblast 

population can be further divided into type 1 and type 2 neuroblasts. They can be 

differentiated by their processes: type 1 neuroblasts typically have shorter (1-5 

µm processes) whereas the type 2 neuroblasts have longer 20-50 µm 

processes). Another characteristic is that the type 2 neuroblasts express NeuN 

whereas the type 1 does not. Therefore, the type 2 neuroblast is likely to be a 

more mature form of the type 1 neuroblast, while both are post-mitotic neuronal 

precursor cells as they differentiate to become immature neurons (Encinas et al. 

2006) 

 

1.1.3.4 Immature and mature neurons 

 

The immature neurons are larger cells as compared to the neuroblasts with 

somata of 15-20 µM across and their morphology is similar to that of the granule 

cells of the dentate gyrus. They have round somata with apical process that 

branches out in the molecular layer. They express the same markers as the type 

2 neuroblasts and therefore can only be identified through morphological 

analysis. Upon maturation into mature neurons, they will move up into the 

granule cell layer with more developed apical dendrites and axons forming the 

mossy fibres. They cease to express the immature neuronal markers PSA-NCAM 

and Dcx and began to express the neuronal markers of the granule cell neurons. 
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GABAergic activation of the new neurons due to high chloride-dependent 

depolarization may help promote formation of GABAergic and glutamatergic 

synaptic inputs in these newly formed neurons (Ge et al., 2006). 

 

Identification of the markers of the various stages of neurogenesis allows clear 

delineation of the various stages of neural stem cells development. 

  

1.1.4 Regulation of cell proliferation  

 

The presence of continuous neurogenesis in both the SVZ and the SGZ 

suggests that the adult NSPCs are maintained throughout the life of the 

organism. There have been suggestions that Hedgehog signaling is present in 

the quiescent NSPC to establish and maintain the NSPC pool required for 

continuous neurogenesis (Ahn and Joyner, 2005; Balordi and Fishell, 2007; Han 

et al., 2008). As mentioned in the previous sections, the NSPC pools that are 

capable of proliferation are the quiescent NSPCs, the transit amplifying cells and 

to a lesser extend the neuroblasts. There are a variety of pathological, 

physiological and pharmacological stimuli that are capable of regulating the cell 

proliferation rate during neurogenesis. Such factors include exercise, learning, 

seizures, stroke, aging, hormones and antidepressant treatments (Ming and 

Song, 2005; Steiner et al., 2008; Hattiangady and Shetty, 2008; Zhao et al., 

2008). However, each of these factors affects different pools of neural 

progenitors. For example, neuroblasts proliferation can be promoted induced due 
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to kainic acid-induced seizures whereas treatment with the antidepressant, 

fluoxetine, targets both the neuroblasts and the transit amplifying progenitors 

(Jessberger et al., 2005; Encinas et al., 2006).  

 

Various growth factors also affect the cell proliferation rate of the NSPCs. 

NSPCs, when dissociated from the brain, require the presence of growth factors 

such as epidermal growth factor (EGF) and basic fibroblast growth factor (FGF2) 

for long term survival and expansion in culture (Reynolds and Weiss, 1992; Kuhn 

et al., 1997). However, these growth factors and their respective receptors are 

temporally regulated in development. For example, the EGF receptors are only 

express on the NSPCs at E14.5 whereas the FGF2 responsiveness appears 

much earlier in development (E8.5) (Tropepe et al., 1999).  Moreover, the 

maintenance of NSPC proliferation by EGF and FGF2 may also differ in their 

mechanisms as EGF is able to promote proliferation after expansion of the EGF-

responsive pool of NSPCs as compared to the FGF2 responsive pool. One report 

also suggests that FGF2 inhibits neuronal lineage determination and thereby 

maintains the progenitor pool in the proliferative state (Chen et al., 2007).This 

difference was suggested to be a result of control of cell cycle length by the 

growth factors (Gritti et al., 1999). 

 

Another growth factor that has been implicated in the maintenance of self-

renewal of NSPCs is the cytokine ciliary neurotrophic factor that signals through 

the heterotrimeric receptor complex of CNTF receptor α, Leukemia Inhibitory 
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Factor (LIF) receptor β and gp130 subunits (Conover et al., 1993; Shimazaki et 

al., 2001). LIF is also routinely used for the maintenance of human NSPCs 

(Carpenter et al., 1999). The activation of both the CNTF and LIF receptors can 

promote self renewal in NSPCs mediated through Notch signalling (Chojnacki et 

al., 2003). 

 

In order to influence the proliferation of the NSPCs, the growth factors involved 

may not need to be from the cells of the neurogenic niche. At the neurogenic 

niches, lies a vast network of blood vasculature which is closely juxtaposed to the 

NSPCs, the progenitors, the neurons and the glial cells. Thus growth factors 

could also be derived from the circulatory system (Palmer et al., 2000). The 

vascular endothelial cells have been shown to secrete soluble factors that help to 

promote the proliferation of the NSPCs and inhibit their differentiation (Shen et 

al., 2004). Interestingly, an angiogenic factor, vascular endothelial growth factor 

(VEGF) that can promote vascular endothelial growth is also capable of 

stimulating NSPC proliferation both in vitro and in vivo (Jin et al., 2002).  

 

Besides the host of growth factors, physiological activity such as exercise and 

learning can also promote the increase in cell proliferation. Voluntary exercise on 

running wheels has been shown to increase NSPC proliferation as compared to 

mice in the same enriched environment with immobilised running wheels (Ho et 

al., 2009). However, in some cases, simply exposure to an enriched social and 

learning environment can also increase the proliferation of the neuroblasts and 
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the transit amplifying cells (Steiner et al., 2008). These animals exposed to 

enriched environments are also shown to be able to better perform in learning 

and memory tasks such as the Morris water maze (Kempermann et al., 1997). 

 

Aging contributes to decreased cell proliferation. It has been shown that in aged 

rats, the number of Sox2+ cells does not differ from that in young rats. However, 

when analysed together with markers of proliferation such as Ki-67 and BrdU 

incorporation, it was apparent that there is an increase in the quiescence of these 

Sox2+ neural stem cells (Hattiangady and Shetty, 2008). Therefore, aging 

reduces the proportion of proliferating cells without affecting the quiescent neural 

stem cell pool. 

 

Studies have also shown that stress can cause reduce NSPC proliferation. This 

is attributed to the presence of glucocorticoid stress hormones, such as cortisol 

in humans and corticosterone in rodents, reducing the NSPC proliferation. 

Administration of glucocorticoid hormones has been shown to reduce 

neurogenesis in rats (Cameron and Gould, 1994; Gould et al., 1998; Karishma 

and Herbert, 2002). Removal of circulating adrenal steroids by adrenalectomy, on 

the other hand, is able to reverse the stress-induced decrease in neurogenesis 

(Cameron and McKay, 1999; Cameron et al., 1998; Mirescu et al., 2004). 

 

Besides all the above mentioned factors, some morphogens are also capable of 

regulating the NSPC proliferation, albeit that these may be the downstream 
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signaling molecules that are directly activated by the physiological and 

behavioural effects mentioned above. Some of these morphogens such as bone 

morphogenetic proteins (BMPs), Notch, Noggin, Wingless-type MMTV integration 

(Wnt) and Sonic hedgehog (Shh) are members of the groups of developmental 

morphogens that are present during embryonic development (Breunig et al., 

2007; Fan et al., 2004; Lai et al., 2003;  Babu et al., 2007).  

 

Notch signaling in NSPCs stimulates proliferation and self renewal (Breunig et 

al., 2007). The Notch ligands, Jagged1 and Jagged2, bind to its extracellular 

domain, promoting cleavage of the Notch intracellular domain (NICD), which will 

translocates to the nucleus to modulate transcription of gene repressors, 

including the Hes and Herp genes, that downregulate expression of  proneural 

genes and so inhibit neuronal differentiation (Kageyama and Ohtsuka, 1999; Iso 

et al., 2003). It has also been shown that overexpression of NICD leads to the 

maintenance of NSPCs even under conditions that drive differentiation in vivo 

(Breunig et al., 2007).  

 

1.1.5 Regulation of neurogenesis and differentiation 

 

Physiologically, generation of new neurons only occurs in the two neurogenic 

regions, the SVZ and the SGZ, whereas the astrocytes and oligodendrocytes are 

continuously being renewed throughout the central nervous system. Therefore, 

there must be specific signals that regulate the tight restriction of neuron 
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formation at these two neurogenic regions. In the dentate gyrus, the neuronal 

formation signals are modulated by Wnt-signaling (Lie et al., 2005). 

 

Glial differentiation, however, is regulated by the bone morphogenic protein 

(BMP) signaling cascade in both the SVZ and the SGZ (Lim et al., 2000; 

Bonaguidi et al., 2005). The BMP signals can be antagonized by noggin at the 

SVZ and neurogenesin-1 at the SGZ, which upon blockade of the BMP signaling; 

direct the differentiation process to neuronal differentiation (Lim et al., 2000; Ueki 

et al., 2003). Noggin is specifically expressed by the ependymal cells at the SVZ 

and neurogenesin-1 by the astrocytes and granule cells at the dentate gyrus and 

this expression serves to specifically block the BMP signaling to bring about 

neuronal differentiation in these two regions (Lim et al., 2000; Ueki et al., 2003). 

 

Following initiation of differentiation, the newly formed neurons will be directed to 

migrate towards their designated location for neuronal integration. Generally the 

adult central nervous system is not permissive to neurite outgrowth and neuronal 

migration. Despite the inhibitory environment in the central nervous system, the 

new neurons of the SVZ are directed to migrate to their destination by a host of 

adhesion molecules, such as PSA-NCAM, β1-intergrin, Tenascin-R, and 

guidance signaling molecules, such as GABA, neuregulin and Slits. These 

molecules maintain the stability, mobility and direction of the neuronal migration 

(Ming and Song, 2005; Zhao et al., 2008). As for the dentate gyrus, the newly 

formed neurons are maintained in the granule cell layer and migrate out from the 
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border with the hilus into the granule cell layer under the control of the molecule 

reelin (Gong et al., 2007). More recent knockout and knockdown studies further 

identify that Dcx, Disrupted-in-Schizophrenia 1 (DISC1) and Nuclear distribution 

protein nudE-like 1 (NDEL1) are also involved in maintaining the neuronal 

migration pathways in SVZ and SGZ (Koizumi et al., 2006; Duan et al., 2007). 

 

Growth factors also have the ability to influence the process of neurogenesis. It 

has been shown that FGF2 can enhance neuronal survival, differentiation, axonal 

growth and migration in cultured hippocampal granule cells (Lowenstein and 

Arsenault, 1996a; Lowenstein and Arsenault, 1996b). Intracerebroventricular 

infusion of FGF2 in middle-aged rats has also been show to enhance 

neurogenesis and promote dendritic growth (Rai et al., 2007).  

 

Another growth factor, insulin-like growth factor (IGF1), was also shown to 

promote generation of new neurons (Aberg, 2000; Anderson, 2002). 

Interestingly, overexpression of IGF1 locally in the hippocampus of the Ames 

dwarf mouse was able to act on the NSPCs at the dentate gyrus to increase 

neurogenesis and also activate anti-apoptotic signals (Sun, 2006). Neurogenesis 

in hippocampus has been suggested to be involved in learning and memory 

(Shors et al., 2001; Synder et al., 2005, Winocur et al., 2006, Kee et al., 2007). 

This IGF1-induced increase in neurogenesis might explain why Ames mice 

maintain their cognitive ability during aging as compared to age-related  decline 

in cognition in normal mice (Sun, 2006).  
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1.1.6 Synaptic integration of the new neurons 

 

Interestingly, the process of synaptic integration of the new neurons into existing 

neural networks follows the same steps as the embryonic and early neuronal 

developmental pathway. The neural progenitors and immature neurons need to 

be activated by the presence of ambient γ-aminobutyric acid (GABA) signals 

before they are capable of receiving any functional synaptic inputs (Ge et al., 

2007). It has been suggested that the new dentate granule cells need to be 

primed with GABAergic inputs for about one week after formation, followed by 

two weeks of glutamatergic induction before finally developing mature 

perisomatic GABAergic inputs (Esposito et al., 2005). 

 

Taking inference from the embryonic brain, GABA initially acts as an excitatory 

molecule by binding to GABAA receptors present on the NSPCs. This binding 

leads to an efflux of Cl- ions causing depolarization and the subsequent 

activation of voltage-dependent calcium channels (Ben-Ari, 2002). As the NSPC 

matures and differentiates, the GABA signal switches from being excitatory to 

become inhibitory (LoTurco, 1995). 

 

Following GABAergic priming, glutamatergic synapses are formed (Ben-Ari, 

2007). N-methyl-D-aspartate (NMDA) receptor subunits NR1 and NR2B are 

expressed in quiescent neural stem cells and immature neurons in the DG 
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(Nacher et al., 2007). In adult rodents, the activation of NMDA receptors by 

NMDA causes a drop in neural stem cell proliferation in the SGZ and blockade of 

the NMDA receptor using antagonists MK-801 and CGP37849 increased cell 

proliferation (Cameron et al., 1995; Nacher et al., 2003). This shows that 

glutamatergic signals at the quiescent neural stem cell stage inhibit cell 

proliferation. However, Tashiro et al. (2006) showed that the glutamatergic 

signals are required for neuronal survival in the newly generated neurons where 

retroviral knockout of NR1 in vivo caused a decrease in the survival of new 

neurons. This may suggest a dual mechanism by glutamatergic input, one to 

inhibit NSPC proliferation and the other to maintain cell survival during neuronal 

maturation.  

 

Upon migration to the region where the synaptic pathways are to be integrated, 

these new neurons will contact pre-existing boutons that synapse with other 

neurons. However, as they mature, they will eventually form stable synapse with 

boutons that are devoid of other synaptic partners (Toni et al., 2007). 

 

1.1.7 Antidepressant treatments and neurogenesis 

 

Recently, it has been discovered that some antidepressant and mood stabilizer 

therapies are able to increase neurogenesis. Treatments such as lithium, 

electroconvulsive seizure, monoamine oxidase inhibitors, norepinephrine-

selective reuptake inhibitors and 5-HT-selective reuptake inhibitors (SSRIs) have 
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been shown to increase proliferation of NSPCs (Malberg et al., 2000; Chen et al., 

2006). Using learned helplessness as an animal model for depression, it was 

shown that controllable stress caused less reduction in SGZ NSPC proliferation 

as compared to uncontrollable stress in male rats (Shors et al., 2007). In another 

related study, Chen et al. (2006) discovered that SSRIs can reverse the 

behavioral effect of learned helplessness with the increased in SGZ NSPC 

proliferation. This suggests that the effects of depression and associated 

decreases in neurogenesis both involve 5-HT as a mediator.  
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1.2 The serotonergic system and neurogenesis 

 

1.2.1 Role of 5-HT in brain development 

 

Serotonin (5-HT) is sometimes called the “happy hormone” as it is known to 

activate serotonergic systems which give rise to a feeling of well being and 

elation. The serotonergic system has a widespread distribution in the CNS and it 

influences a host of different aspects of mammalian physiology ranging from the 

cardiovascular system, respiration, the gastrointestinal system (Kato et al., 

1999), pain sensitivity and thermoregulation to more centrally regulated functions 

such as circadian rhythm, aggression, appetite, sexual behavior, sensorimotor 

activity, cognition, mood, learning and memory (Miyata et al., 2000; Nebigil et al., 

2000; Thorin et al., 1990; Bazarevitch et al., 1978; Kato et al., 1999; Sodhi and 

Sanders-Bush, 2004). In fact, 5-HT has a dual role: it acts as a regulator of brain 

development during the embryonic stage and as a neurotransmitter in the mature 

brain.  

 

The development of the embryonic brain follows the principles of refinement of 

experience, also known as the “use it or lose it principle”. The entire brain 

develops in totality and has more cells and more connections than are actually 

required by the fully developed brain. During the maturation period, the brain 

must determine which cells and which connections are required by the mature 

brain and maintain those. The rest of the cells and connections will be lost during 
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the process of brain maturation. Therefore, to determine which of the cells and 

connections are to be kept or removed, the process requires the activation and 

signaling of the neuronal connections. As 5-HT is present in the developing 

organism from a very early stage, it would be a good choice to use it as it is 

already present and functioning in cell signaling (Whitaker-Azmitia, 2001). In fact, 

5-HT may be present as early as the blastocyst stage as embryonic stem cells 

also expressed TPH (Walther and Bader, 1999). 

 

The importance of 5-HT in the developing brain can be seen from 5-HT depletion 

studies. Depletion of prenatal 5-HT delays the onset of neuron formation in the 

serotonergic terminal regions. It has been suggested that in the fetus, 5-HT 

functions to differentiate cortical and hippocampal neurons whereas in the adult 

brain, it is a neurotransmitter as well as regulating neuronal plasticity by 

maintaining the synaptic connections in the cortex and hippocampus (Azmitia et 

al., 1995; Chen et al., 1994; Mazer et al., 1997). 

 

5-HT has also being found to affect neural precursor cells. As mentioned 

previously, the neuronal precursor cells are found at the SVZ of the lateral 

ventricles and the SGZ of the hippocampus (Gould et al., 1998). Both inhibition of 

5-HT synthesis and selective lesions of serotonergic neurons caused a decrease 

in the number of newly generated cells in the SGZ as well as the SVZ (Brezun 

and Dasazuta, 1999). 
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1.2.2 5-HT biosynthesis and breakdown 

 

5-HT is synthesized from L-tryptophan, which can be found across different 

species from lower plants to higher mammals. The tryptophan is first converted 

by 5-hydroxytryptophan via a rate limiting step mediated by the enzyme 

tryptophan hydroxylase (TPH), before being converted to 5-hydroxytryptamine 

(5-HT) by aromatic L-amino acid decarboxylase (or dopa decaryboxylase). 5-HT 

is broken down by monoamine oxidase and aldehyde dehydrogenase into 5-

hydroxylindolacetic acid (5-HIAA). This byproduct of 5-HT breakdown is usually 

pass out in urine and can be used as a method of detection of 5-HT amounts in 

the body. 

 

TPH, being the rate limiting enzyme in the biosynthesis of 5-HT, therefore 

determines the biosynthesis rate of the 5-HT via its enzyme levels and activity. 

Two different isoforms of TPH has been found: TPH1 is found mostly in the 

periphery in multiple tissue types whereas the more recently discovered TPH2 

isoform is found specifically in the brain (Zhang et al., 2004). The enzyme activity 

of the two isoforms are also varied with TPH1 having a higher enzyme activity. 

As 5-HT does not pass through the blood-brain barrier, the 5-HT synthesized 

within the central nervous system and at the periphery generally does not 

intermix (Erspamer, 1966). However, the tryptophan and the TPH product, 5-

hydroxytryptophan, do cross the blood-brain barrier; therefore their levels can 
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generally affect the overall serotonergic systems in the brain (Zmilacher et al., 

1988).  

 

1.2.3 The 5-HT receptors subtypes – properties and functions 

 

To detect the serotonergic signals, there are the 5-HT receptors. The first 5-HT 

receptor was identified by Gaddum and Picarelli (1957). To date, there are a total 

of 16 different subtypes of 5-HT receptors identified. The classification of the 5-

HT receptors into seven major family groups was done based on their animo acid 

sequence, pharmacology and intracellular signaling mechanisms (Gaddum and 

Picarelli, 1957; Hoyer et al., 1994). The 5-HT receptors are mostly seven putative 

transmembrane domains, G-protein coupled metabotropic receptors except for 

the 5-HT3 receptor, which is a ligand-gated ion channel (Uphouse, 1997). The 

functions of these receptors in the brain are associated with specific physiological 

responses which modulate neuronal activity, neurotransmitter release and 

behavioural changes. These receptors often have distinct distributions in the 

brain and also specific downstream signal transduction pathways in the cells that 

express them. Each of these 5-HT receptors families will be reviewed below with 

a focus on their cellular distribution in the brain, pharmacology and their signal 

transduction pathway activation, which may affect NSPC proliferation and 

neurogenesis.  
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1.2.3.1 5-HT1 receptor family 

 

The 5-HT1 receptor family consists of subtypes 1A, 1B, 1D, 1E and 1F. 5-HT1C 

receptor has been reclassified as the 5-HT2C receptor (Pazos et al., 1984). The 

5-HT1 receptor subtypes have high amino acid sequence homology and all are 

coupled negatively to adenylate cyclase via G-protein. The initial criteria of 

classification of 5-HT1 receptors was high affinity for 5-CT and methysergide, 

blockade by methiothepin and no blockade by selective antagonists of 5-HT2 and 

5-HT3 receptors (Bradley et al., 1996). However, with the current inclusion of the 

5-HT1E and 5-HT1F receptors, which have low affinity for 5-CT and 

methiothepin, these criteria are to be realigned. 

 

1.2.3.1.1  5-HT1A receptors 

 

In vivo mapping of the 5-HT1A receptor distribution has been conducted by 

receptor autoradiography using ligands such as [3H]-5-HT, [3H]-8-OH-DPAT, [3H]-

WAY100635 and [125I]-p-MPPI (Pazos and Palacios, 1985; Hoyer et al., 1986; 

Kung et al., 1995; Khawaja, 1995). High density of 5-HT1A receptors is found in 

limbic brain areas, such as the hippocampus, cingulated cortex, entorhinal 

cortex, lateral septum and the mesencephalic raphe nuclei. The 5-HT1A receptor 

mRNA message distribution also mirrors that of the results from the binding 

assays (Chalmers and Watson, 1991; Pompeiano et al., 1992; Burnet et al., 

1995). It is also found that this distribution of the 5-HT1A receptor is similar 
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across species except that the distribution of 5-HT1A receptor in the 

hippocampal and cortical areas of human brain is different from that of rodent in 

that the human CA1 and middle laminae contain higher levels of 5-HT1A 

receptor mRNA whereas in the rat, the 5-HT1A receptor mRNA is more abundant 

in the dentate gyrus and deep laminae (Burnet et al., 1995). In situ hybridization 

and immunohistochemistry shows the presence of 5-HT1A receptors in the 

cortical pyramidal neurons and in the pyramidal and granular neurons of the 

hippocampus (Pompeiano et al., 1992; Burnet et al., 1995). The 5-HT1A receptor 

has also been reported to be expressed by serotonergic neurons in the raphe 

nuclei, cholinergic neurons in the septum and glutamatergic neurons in the cortex 

and hippocampus (Francis et al., 1992; Kia et al., 1996a). Ultrastructurally, the 5-

HT1A receptor can be found at the synaptic membranes and also 

extrasynaptically (Kia et al., 1996b). 

 

5-HT1A receptor found presynaptically, classified as autoreceptors, are found to 

regulate the release of the 5-HT at these synaptic terminals (Miquel et al., 1991). 

Stimulation of 5-HT1A autoreceptors inhibits the release of 5-HT to the synaptic 

terminals (Sharp and Hjorth, 1990). Therefore, some of the agonists of the 5-

HT1A receptors exhibit a biphasic response in that they inhibit the release of 5-

HT release by stimulating the 5-HT1A receptor and at the same time, the agonist 

stimulates the postsynaptic 5-HT1A receptors in place of the 5-HT. One such 

agonist is 8-OH-DPAT, which has been shown to bind to the 5-HT1A 
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autoreceptors at low doses whereas at high doses, it stimulates the postsynaptic 

5-HT1A receptors (Hjorth and Magnusson, 1988). 

 

Pharmacologically, the 5-HT1A receptor is unique in the 5-HT1 family and can 

easily be differentiated from the other members within the family using selective 

5-HT1A receptor agonists such as 8-OH-PIPAT, 8-OH-DPAT, dipropyl-5-CT and 

gepirone (Hoyer et al., 1994). There are also 5-HT1A receptor antagonists 

available, such as (S)-UH-301, WAY100135, NAD-299 and WAY100635 (Hillver 

et al., 1990; Björk et al., 1991; Johansson et al., 1997; Fletcher et al., 1993a,b, 

1996). WAY100635 is by far, the most potent antagonist, although selectivity 

wise, NAD-299 is more superior (Johansson et al., 1997; Fletcher et al., 1996). 

Also, a new agonist S15535 is found to be a selective 5-HT1A presynaptic 

receptor (autoreceptor) agonist and at the same time a 5-HT1A postsynaptic 

receptor antagonist (Millan et al., 1993 and 1994). 

 

The 5-HT1A receptors couple negatively to adenylate cyclase via Gαi-proteins in 

guinea pig and rat hippocampal tissues and in transfected cell lines expressing 

recombinant 5-HT1A receptors (Boess and Martin, 1994; Albert et al., 1996; 

Saudou and Hen, 1994). However, at the dorsal raphe, there are reports that 

suggest 5-HT1A receptors do not inhibit adenylate cyclase (Clarke et al., 1996). 

There are also reports that suggest 5-HT1A activation stimulate adenylate 

cyclase at the hippocampal tissues (Shenker et al., 1983; Fayolle et al., 1988). 

However, these positive coupling are suggested to be attributed to the effects of 
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other 5-HT receptor subtypes, such as 5-HT7 receptors (Barnes and Sharp, 

1999). Besides interaction with adenylate cyclase, the 5-HT1A receptor has also 

been shown to modulate intracellular Ca2+ and activate phospholipase C in cell 

lines transfected with 5-HT1A receptors (Albert et al., 1996). However, these 

results may be dependent on the G-protein subunit and the effector proteins 

present in the particular cell line used as there is no evidence that this activation 

exist in the brain tissues (Albert et al., 1996). The 5-HT1A receptor activation has 

also been reported to induce the secretion of S-100β from primary astrocytes in 

culture and this increase induced an increase in growth in neuronal cultures 

(Azmitia et al., 1996; Riad et al., 1994). This suggests a possible neurotropic role 

of 5-HT1A receptors in the brain (Riad et al., 1994; Yan et al., 1997; Azmitia et 

al., 1996).  

 

1.2.3.1.2  5-HT1B receptors 

 

From autoradiography studies, the 5-HT1B receptor is found to be distributed 

with high density the globus pallidus, ventral pallidum, substantia nigra and 

entopeduncular nucleus of the basal ganglia (Verge et al., 1986; Pazos et al., 

1985; Bruinvels et al., 1993). However, the in situ hybridization studies shows 

some agreement with and some discrepancy from the binding studies, such as 

the presence of 5-HT1B receptor mRNA at the dorsal and median raphe nuclei, 

which is not shown in the binding studies, and for striatum which is consistent in 

both binding and mRNA studies (Boschert et al., 1994; Doucet et al., 1995; 
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Bruinvels et al., 1994a,b; Jin et al., 1992). This suggests that the 5-HT1B 

receptors are found both presynaptically and postsynaptically to the 5-HT 

neurons in which the receptors are synthesized at the cell body and transported 

to nerve terminals (Bruinvels et al., 1994a,b; Boschert et al., 1994).  

 

5-HT1B receptors can be activated by potent agonist such as RU 24969, 5-CT 

and L-694247 and blocked by methiothepin and CP 93129 (Hoyer et al., 1994). 

Although these compounds have affinity for other 5-HT receptors subtypes such 

as the 5-HT1A receptor, the affinity of these drugs are relatively low and 

therefore 5-HT1B receptors can be discriminated from the other 5-HT receptors. 

As there are structural similarities between 5-HT1B and 5-HT1D receptors, only 

high affinity and selective antagonists such as SB-244289 and SB-216641 can 

be used to distinguish between 5-HT1B and 5-HT1D receptors (Roberts et al., 

1997; Price et al., 1997) 

 

Similar to 5-HT1A receptors, 5-HT1B receptors are coupled negatively to the 

adenylate cyclase in cell culture when stimulated with forskolin and in vivo in the 

rat and calf substantia nigra (Adham et al., 1992; Levy et al., 1992; Bouhelal et 

al., 1988; Schoeffter and Hoyer, 1989). 

 

1.2.3.1.3  5-HT1D receptors 

 

The 5-HT1D receptors are expressed at relatively low levels in the central 
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nervous system within the basal ganglia, the cortex, the hippocampus and spinal 

cord (Bruinvels et al., 1993; Castro et al., 1997). However, in situ hybridization 

has detected 5-HT1D receptor mRNA in various regions of the brain including the 

caudate putamen, nucleus accumbens, olfactory cortex, dorsal raphe nucleus 

and locus coeruleus but interestingly undetectable in some basal ganglia regions 

such as ventral pallidum, globus pallidus and substantia nigra where the 

autoradiography detected binding sites (Hamblin et al., 1992a,b; Bruinvels et al., 

1994a,b). These data suggest that the 5-HT1D receptors are located 

predominantly on the synaptic terminals of both 5-HT and non-5-HT neurons 

away from the cell body. 

 

Due to the 77% amino acid sequence similarity within the transmembrane region, 

the 5-HT1B and 5-HT1D receptors are almost indistinguishable by their drug 

binding profiles (Weinshank et al., 1992). Therefore, most 5-HT1B receptor 

ligands also have relatively high affinity for 5-HT1D receptors (Pauwels et al., 

1996). However, there are some compounds, such as BRL-15572, which have 

been reported to have a higher affinity and more selectivity for 5-HT1D receptors 

as compared to 5-HT1B receptors (Price et al., 1997). However, due to the lack 

of a highly selective agonist (BRL-15572 being an antagonist), the signal 

transduction mechanism driven by 5-HT1D receptors it is still not clear, although 

there are suggestions that it couples negatively to adenylate cyclase in cells 

transfected with 5-HT1D receptors (Weinshank et al., 1992; Hamblin and Metcalf, 

1991). 
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1.2.3.1.4  5-HT1E and 5-HT1F receptors 

 

Less is known about the receptor distribution of these two receptors in terms of 

their distribution using autoradiography, however based on [3H]-5-HT 

autoradiography it has been suggested that the 5-HT1E and 1F receptors are 

distributed in the entorhinal cortex, caudate putamen, claustrum, amygdale and 

hippocampus (Miller and Teitler, 1992; Bruinvels et al., 1994c; Barone et al., 

1993). Moreover, in situ hybridization studies of 5-HT1E and 5-HT1F receptors 

detected the mRNA message in the same areas as the binding studies, 

suggesting that these receptors have a postsynaptic location (Bruinvels et al., 

1994a,b). 

 

Both 5-HT1E and 5-HT1F receptors have similar pharmacological characteristics 

with high affinity for 5-HT and low affinity for 5-CT (Adham et al., 1993a,b; 

Amlaiky et al., 1992; Lovenberg et al., 1993a,b ). 5-HT1E receptors can be set 

apart from 5-HT1F receptors by their lower affinity for sumatriptan. 

Overexpression of 5-HT1E receptors has been shown to inhibit adenylate 

cyclase activity (McAllister et al., 1992; Levy et al., 1992; Adham et al., 1994; 

Zgombick et al., 1992). As for 5-HT1F receptor, the agonist LY344864 is found to 

be selective potent agonist in overexpression cell culture systems and, as for the 

5-HT1E receptor, the 5-HT1F receptor is able to inhibit adenylate cyclase activity 
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(Phebus et al., 1997; Amlaiky et al., 1992; Johnson et al., 1997; Lovenberg et al., 

1993a,b; Adham et al., 1993a,b). 

 

1.2.3.2 5-HT2 receptor family 

 

The 5-HT2 receptor family consists of three members subtypes namely, 5-HT2A, 

5-HT2B and 5-HT2C receptors which are similar in structure, pharmacology and 

signal transduction pathways. Although the 5-HT2 receptors have a high degree 

of structural similarity in their seven transmembrane domains, these domains are 

structurally different from the other 5-HT receptor families (Baxter et al., 1995). 

The 5-HT2 receptors are all coupled positively to phospholipase C and are able 

to mobilize intracellular calcium. 

 

1.2.3.2.1  5-HT2A receptors 

 

The 5-HT2A receptor is found to be present in many forebrain cortical areas, 

such as neocortex, entorhinal cortex, pyriform cortex, claustrum, caudate 

nucleus, nucleus accumbens, olfactory tubercle and hippocampus with results 

from autoradiography ligand binding assays, in situ hybridization mRNA 

expression and immunohistochemistry being consistent with each other (Pazos 

et al., 1985, 1987; Mengod et al., 1990; López-Giménez et al., 1997; Pompeiano 

et al., 1994; Burnet et al., 1995; Morilak et al., 1993, 1994). This further suggests 

that the receptors are located postsynaptically to the 5-HT neurons.  Beside 
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neurons, cultured astrocytes and glioma cells are also found to express 5-HT2A 

receptors (Deecher et al., 1993; Meller et al., 1997). 

 

Pharmacologically, the 5-HT2A receptor is characterized by low binding affinity to 

5-HT, high binding affinity to the agonists, 1-[2,5-dimethoxy-4-iodophenyl]-2-

aminopropane (DOI), (-)-1-[2,5-dimethoxy-4-bromophenyl]-2-aminopropane 

(DOB), 2,5-dimethoxy-4-methylamphetamine  (DOM), and 5-HT2 receptor 

antagonists, ICI 170809 and ritanserin. However, to differentiate the effects of 5-

HT2A receptors from the other 5-HT2 receptors, selective agonists for 5-HT2A 

receptors, such as MDL 100907, and selective 5-HT2B and 5-HT2C receptor 

antagonists, such as SB206553 and SB200646A, can be used in conjunction 

(Sorensen et al., 1993; Kehne et al., 1996; Baxter et al., 1995; Baxter, 1996). 

 

Stimulation of 5-HT2A receptors has been shown to activate phospholipase C via 

G-protein coupling in 5-HT2A receptor expression cell lines and in brain tissues 

(Pritchett et al., 1988; Julius et al., 1990; Conn and Sanders-Bush, 1984; Stam et 

al., 1992; Godfrey et al., 1988). Stimulation of 5-HT2A receptors also causes an 

increase in brain-derived neurotrophic factor (BDNF) levels (Vaidya et al., 1997). 

This increase has also been observed in response to antidepressant treatments, 

which suggests that BDNF may be one of the contributing factors to the 

therapeutic effects of antidepressants due to alteration of synaptic connections 

by BDNF (Duman et al., 1997). 
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1.2.3.2.2  5-HT2B receptors 

 

The 5-HT2B receptor expression is relative low and has been detected 

immunohistochemically in the cerebellum, lateral septum, dorsal hypothalamus 

and medial amygdala (Duxon et al. 1997). The 5-HT2B receptors have low 

affinity for ritanserin but high affinity for yohimbine as compared to 5-HT2A and 

5-HT2C receptors (Bonhaus et al., 1995). There are also potent selective 

agonists and antagonists for the 5-HT2B receptor available, such as BW723C86 

and SB206553, respectively (Baxter, 1996; Baxter et al., 1995).  

 

It has been noted in heterologous expression systems that the 5-HT2B receptor 

can hydrolyse phosphatidylinositol (Wainscott et al., 1993; Schmuck et al., 1994; 

Kursar et al., 1994). On top of this, some studies suggest that 5-HT2B receptors, 

during neural development, can mediate the mitogenic effects of 5-HT due to the 

expression of 5-HT2B receptor at the neural crest during embryonic development 

and developmental abnormalities occurring in 5-HT2B receptor knockout mice 

(Choi et al., 1997). 

 

1.2.3.2.3 5-HT2C receptors 

 

The 5-HT2C receptor is expressed in the choroid plexus, pyriform, cingulate and 

retrosplenial, nucleus accumbens, olfactory nucleus, amygdale, hippocampus 

and the basal ganglia (Palacios et al., 1991). The mRNA expression of 5-HT2C 
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receptors is in line with the ligand autoradiography, which suggests the 

postsynaptic location of the 5-HT2C receptor except for high levels of mRNA 

expression and low binding autoradiography at the lateral habenular nucleus, 

which suggests the 5-HT2C receptor may be presynaptic on the projection from 

the habenula (Abramowski et al., 1995). 

 

The pharmacology of the 5-HT2C receptor is close to that of the other two 5-HT2 

receptors but can be distinguish by its high affinity for SB 200646A and lower 

affinity for the antagonists such as  ketanserin, MDL 100907 and spiperone. As 

with the other two 5-HT2 receptors, activation of 5-HT2C receptor increases 

phospholipase C activity especially at the choroid plexus due to high 5-HT2C 

receptor expression there (Sanders-Bush et al., 1988). 

 

1.2.3.3 5-HT3 receptor family 

 

The 5-HT3 receptor is a ligand-gated ion channel and the only non G-protein 

coupled receptor in the 5-HT receptor family. Its structure is consistent with the 

Cys-loop superfamily of pentameric proteins and the channel is permeable to 

Na+, K+ and Ca2+ ions (Maricq et al. 1991; Yang 1990; Hargreaves et al, 1994). It 

mediates mainly currents and membrane depolarization under physiological 

conditions. Activation of postsynaptic 5-HT3 receptors causes fast excitatory 

neural transmission in brain areas such as the lateral amydala and visual cortex; 

whereas presynaptic 5-HT3 receptors modulate release of dopamine and GABA 
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(Roerig et al., 1997; Sugita et al., 1992; Koyama et al., 2000; van Hooft and 

Vijverberg, 2000). The 5-HT3 receptors can exist as homopentamers, with 5-

HT3A receptors subunits, or heteropentamers, with mixed 5-HT3A and 5-HT3B 

receptor subunits (Davies et al., 1999; Hanna et al., 2000). The presence of the 

homomeric and heteromeric 5-HT3 receptors accounts for some of the 

heterogeneity of the responses after the activation 5-HT3 receptors (Yang et al., 

1992; Fletcher and Barnes, 1998; Hussy et al., 1994). 

 

The highest levels of 5-HT3 receptor expression are at the dorsal vagal complex 

of the brain stem (Pratt et al., 1990). Other areas of 5-HT3 receptor expression 

are the amygdale, hippocampus and the superficial layers of the cerebral cortex 

(Parker et al., 1996a). In situ hybridization experiments show that the 5-HT3 

receptors mRNA is found within the hippocampus, piriform cortex and entorhinal 

cortex. Within the hippocampus, 5-HT3 receptor mRNA is found to be expressed 

by the GABAergic interneurons (Tecott et al., 1993).  

 

There are large numbers of pharmacologically selective ligands for 5-HT3 

receptors, however pharmacological difference exist between inter-species 5-

HT3 receptors. The effects of these ligands can differ in three orders of 

magnitudes in some cases, such as selective agonist m-CPBG differs in affinity 

between the rat and the rabbit 5-HT3 receptors in approximately 300-fold 

(Kilpatrick et al., 1991).  The 5-HT3 receptors antagonist MDL72222 also 

 33



displays lower affinity for 5-HT3 receptors in guinea pig (Kilpatrick and Tyers, 

1992). 

 

1.2.3.4 5-HT4 receptor family 

 

The 5-HT4 receptors were initially identified from cultured neurons when 

assaying for stimulation of adenylate cyclase activity (Bockaert et al., 1990). 

Initially, it was thought to be the only 5-HT receptor that can stimulate the 

adenylate cyclase, which was the pharmacological definition of the 5-HT4 

receptor until the discovery of the 5-HT6 and 5-HT7 receptor subtypes (Fillion et 

al., 1975; von Hungren et al., 1975). 

 

The 5-HT4 receptor was found to be present at high levels in the nigrostriatal and 

mesolimbic systems of the brain identified by using selective antagonists 

[3H]GR113808 and  [125I]SB207710 in radioligand studies (Grossman et al., 

1993; Mengod et al., 1996). The in situ hybridization studies also showed a 

similar mRNA distribution as the radioligand binding studies (Gerald et al., 1995; 

Mengod et al., 1996; Claeysen et al., 1996). Two splice variants of the 5-HT4 

receptors are present, the 5-HT4A receptor the expression of which is restricted 

to the striatum and the 5-HT4B receptor, which is widely expressed throughout 

the brain (Gerald et al., 1995). This differential expression may indicate the 

functional difference in the different splice variants.  
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5-HT4 receptors, both native and heterologously expressed, are able to couple to 

adenylate cyclase (Claeysen et al., 1996; Gerald et al., 1995). Although, 5-HT4A 

and 5-HT4B receptors differ in the protein sequence at their C-terminal, which 

may affect G-protein coupling and phosphorylation desensitization of the 

receptor, no pharmacological differences have been reported (Gerald et al., 

1995; Claeysen et al., 1996). It has also been shown that the 5-HT4 receptor 

activation is able to mediate increase in cAMP levels leading to phosphorylation 

of cAMP-dependent protein kinase (Fagni et al., 1992).  

 

1.2.3.5 5-HT5 receptor family 

 

The 5-HT5 receptor subtype is one of the least understood subtypes of 5-HT 

receptor. The 5-HT5A and 5-HT5B receptor subtypes were identified from brain 

cDNA library screening of mouse and rat and shortly after from human cDNA 

library (Matthes et al., 1993; Rees et al., 1994; Erlander et al., 1993),  

 

From in situ hybridization, it has been shown that 5-HT5A receptor mRNA is 

widely distributed in the mouse and rat brain (Plassat et al., 1992; Erlander et al., 

1993). The 5-HT5A receptor transcript was found in neurons of the cerebral 

cortex, the dentate gyrus and the pyramidal cell layer of the hippocampus, the 

granule cell layer of cerebellum and the tufted cells of the olfactory bulb (Plassat 

et al., 1992). As for 5-HT5B receptor, in situ hybridization studies found 

transcripts to be present at supraoptic nucleus of the hypothalamus, medial and 
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lateral habenula, hippocampus, olfactory bulb, dorsal raphe nucleus, entorhinal 

cortex and piriform cortex (Wisden et al., 1993; Erlander et al., 1993). 5-HT5 

receptors are members of the seven transmembrane domains G-protein coupled 

receptor family. It has been found that high overexpression of 5-HT5 receptors 

can result in an inhibition of adenylate cyclase (Francken et al., 1998). 

 

1.2.3.6 5-HT6 receptor family 

 

The identification of 5-HT6 receptors was the result of non-stringency cDNA 

library screening for a seven transmembrane receptor to obtain a novel 5-HT 

sensitive receptor (Monsma et al., 1993; Ruat et al., 1993a,b). The 5-HT6 

receptor was later identified to be a G-protein coupled receptor. The expression 

of the 5-HT6 receptor is generally confined to the CNS although some 

expression has been identified in the periphery (Ruat et al., 1993a,b; Monsma et 

al., 1993). In the brain, 5-HT6 receptor mRNA has been detected in the caudate 

nucleus within the striatum, the olfactory tubercles, hippocampus and nucleus 

accumbens (Monsma et al., 1993; Ruat et al., 1993a,b). Immunohistochemical 

analysis shows of 5-HT6 receptor distribution generally corresponds to the 

mRNA expression suggesting that the receptor is postsynaptic to 5-HT neurons 

as confirmed by electron microscopy (Gérald et al., 1997).  

 

A detailed pharmacological profile of 5-HT6 receptors was obtained using 

selective 5-HT6 receptor antagonists Ro04-6790 and Ro63-0563, which are 
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capable of passing the blood brain barrier (Sleight et al., 1998). This ability 

greatly facilitates in vivo analysis of the 5-HT6 receptors. The 5-HT6 receptor 

transfected into cell lines and the native 5-HT6 receptor in mouse primary striatal 

neuron cultures were able to couple to a metabotropic signal transduction system 

that can stimulates adenylate cyclase activity (Ruat et al., 1993a,b; Monsma et 

al., 1993; Schoeffter and Waeber, 1994).  

 

1.2.3.7 5-HT7 receptor family 

 

The 5-HT7 receptor is the latest identified subtype of the 5-HT receptor family. It 

is found to be expressed in mouse, rat, guinea pig and human (Shen et al., 1993; 

Lovenberg et al., 1993a,b; Plassat et al., 1993; Meyerhof et al., 1993; Ruat et al., 

1993a,b; Tsou et al., 1994; Nelson et al., 1995). There are at least four spliced 

variants, namely 5-HT7A, 5-HT7B, 5-HT7C and 5-HT7D receptor, being 

identified for the 5-HT7 receptors with rat and human expressing only of the three 

variants. Although the 5-HT7C receptor mRNA can be synthesized from the 

human gene, no native 5-HT7C mRNA has been detected in the human tissues 

(Heidmann et al., 1997). 

 

The 5-HT7 receptor tissue expression revealed in both mRNA and ligand binding 

assays shows similar patterns suggesting that the 5-HT7 receptor is probably 

postsynaptic (Stowe and Barnes, 1998b; Gustafson et al., 1996). The tissue 

expression profile indicates that the 5-HT7 receptor is expressed in the thalamus, 
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hypothalamus, hippocampus, cerebral cortex and amygdala (To et al., 1995; 

Stowe and Barnes, 1998b; Gustafson et al., 1996). No distinct splice isoform 

specific tissue expression patterns have been identified (Heidmann et al., 1997, 

1998; Stam et al., 1997). 

 

Both transfected and native 5-HT7 receptors are able to stimulate adenylate 

cyclase by coupling with Gαs-protein within the third intracellular loop of the 

protein (Bard et al., 1993; Heidmann et al., 1997 and 1998; Stam et al., 1997; 

Obosi et al., 1997). However, expression of 5-HT7A receptors in cell lines has 

also enabled the activation of the Gαs insensitive adenylate cyclases, AC1 and 

AC8, as well as the Gαs sensitive isoform, AC5 (Baker et al., 1998). The 

activation of AC1 and AC8 caused an increase in the intracellular [Ca2+] which 

may activate other signalling cascades within the cell (Baker et al., 1998).  

 

1.2.4 The requirement for multiple 5-HT receptor subtypes in brain 

 

The occurrence of 5-HT and the 5-HT receptors originated even before the 

evolutionary separation between vertebrates and invertebrates and has resulted 

in a host of different subtypes of 5-HT receptors that continue to exist in the 

organisms today that must confer a certain advantage of a single ligand, multiple 

receptors system (Peroutka, 1994). Explanations such as that differences in the 

distribution of the 5-HT receptor subtypes in different cells leads to 

multifunctional roles played by 5-HT in neuronal function failed to explain the 
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presence of multiple receptor families as several 5-HT subtypes can be found in 

the same anatomical location (Pazo and Palacios, 1985; Pazo et al., 1987). 

Therefore, a more complex explanation must exist for the presence of multiple 

subtypes of 5-HT receptors that continue to be conserved in evolution.  

 

Closer examination of the cellular response to the neurotransmitter system 

suggests that it depends upon the neurotransmitter’s interaction with a receptor 

followed by the formation of the ligand-receptor complex and the ligand-receptor 

complex interaction with an effector protein. Finally, in order for the interaction to 

produce a response, the overall cellular state must be conducive for leading to 

the effector protein activation (Uphouse, 1997). The effectiveness of the binding 

leading to the cellular response will be dependent on the affinity of the ligand 

receptor binding and the potency of the response. The affinity of the ligand to the 

receptor will determine the stability of the neurotransmitter receptor complex. The 

stability will determine the ability to activate the effector protein and initiate the 

signaling cascade.  

 

However, if the cell contains more than one receptor at which the single 

neurotransmitter can act on, the final cellular response will be the result of the 

interactions of multiple signal cascades and this allow small regulatory 

modulation of the signaling cascade. This will also allow the same 

neurotransmitter to be used to send different cellular messages across different 

brain areas based on the host of receptors expressed in that area and 
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synchronize multiple physiological functions using the same environmental or 

physiological signal (Uphouse, 1997). 

 

It was suggested that five characteristics of the 5-HT receptor system enables 

the modulation of a wide variety of possible neuronal function using one single 

neurotransmitter: (a) 5-HT has varying affinity and/or potency for the different 

receptor subtypes; (b) multiple transduction pathways are used by the different 

receptor subtypes; (c) receptor subtypes differ in their susceptibility to agonist-

mediated desensitization/downregulation; (d) receptor subtypes interact in 

mediating cellular responses to the neurotransmitter; and (e) receptor subtypes 

respond differently to changes in the physiological environment. These five 

characteristics allow the cells to sense the quantitative status of 5-HT at the 

synapse which translate to different receptors being activated. The activation of 

that particular receptor will lead to the activation of the corresponding signalling 

cascade. The desensitization/downregulation of the receptors with the receptor 

subtype interactions provide a plausible mechanism for modulation of the 5-HT 

signals. These will lead to the organism being able to adapt to the changing 

physiological demands (Uphouse, 1997).  

 

1.2.5 The 5-HT transporter 

 

Another important protein that is involved in the regulation of 5-HT levels in the 

synapses is the 5-HT transporter (SERT; SLC6A4, solute carrier family 6 
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neurotransmitter transporter, member 4). The function of SERT is to reuptake the 

5-HT at the synapses and returns it back into the serotonergic cells. This also 

serves to limit the duration for which 5-HT acts on the postsynaptic 5-HT 

receptors. There are allelic forms of the SERT genes commonly known as the 

long allele and the short allele which arise from a 44 base pair DNA deletion 

(Levinson, 2006). The short allele does not affect the individual SERT activity but 

rather cause a lower expression of the SERT molecules which affect the 5-HT 

reuptake activity in the cells (Lesch et al. 1996).  SERT is one of the frequent 

targets of antidepressant drugs which act to increase the 5-HT availability at the 

synapses by inhibiting the reuptake process by inhibiting SERT activity (Malberg 

et al. 2000). 
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1.3 Serotonergic systems and NSPC proliferation 

 

Depression is generally accepted to be caused by decreases in 5-HT levels in 

the brain as indicated by brain imaging and neuroendocrinological studies 

(Dursun et al., 2001). This observation forms the neural basis of “the serotonin 

hypothesis” of depression. However, there is little consensus as to the whether 

the lack of 5-HT synthesis, insufficient release, excessive degradation within the 

synaptic cleft or the perturbation in intracellular events postsynaptically are the 

main biochemical causes of depression. As discussed in the previous section, 

some of the current antidepressants act as SSRIs to inhibit 5-HT reuptake 

process, thereby increasing the 5-HT availability at the synapses (Malberg et al., 

2000). The use of SSRIs as antidepressants has been effective in the treatment 

of depression (Potter et al., 1991; Richelson, 1993; Cowen, 1993). 

 

Interestingly, one observation on chronic treatment with SSRI-based 

antidepressants, such as fluoxetine, is that these drugs cause an increase in the 

NSPC proliferation (Malberg et al., 2000; Santarelli et al., 2003).  A landmark 

paper by Santarelli et al. (2003) suggested that hippocampal NSPC proliferation 

is required in order for the antidepressant treatment to have behavioral effects. 

The experiments employed X-ray irradiation to ablate the proliferating neural 

progenitor cells at the SGZ and the SVZ while the non-proliferating cells are not 

affected. After ablation of the proliferating neural progenitor cells at the SGZ of 

mice, the effects of antidepressant treatments, including fluoxetine, were tested 
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using novelty suppressed feeding test (NSF). The NSF test assays the latency 

for the mice to approach and eat a familiar food in a brightly lit arena in the 

presence of a novel stimulus. It measures the stress-induced anxiety in the 

animal and it is a good test for chronic antidepressant treatment (Bodnoff et al., 

1988) that is routinely used in the pharmaceutical industry to screen for potential 

antidepressant drugs. Their result shows that there is a reduction of the latency 

time to feed for mice that went through chronic fluoxetine treatment. However, for 

the mice that have been X-ray irradiated at the SGZ region, the fluoxetine 

treatment failed to reduce the latency time significantly, indicating that the neural 

progenitor cell proliferation, specifically at the SGZ region, is required for the 

behavioral effects of fluoxetine (Santarelli et al., 2003). The ablation of SGZ 

neural progenitor cell proliferation also affected the effects of fluoxetine in the 

chronic unpredictable stress (CUS) test, which is another test for anxiety. In this 

test, the mice were subjected to CUS which impairs self grooming in the mice, an 

effect that has been shown to be rescued by chronic antidepressant treatment 

(Griebel et al., 2002).Chronic treatment with fluoxetine in SGZ irradiated mice 

was able to neither improve the coat condition nor improve the latency to groom, 

indicating that the recovery from the behavioural effects of CUS is also affected 

by ablation of neural progenitor cells at the SGZ (Santarelli et al., 2003). The 

behavioral effects of fluoxetine are specific to hippocampal cell proliferation as 

ablation of proliferative cells in the SVZ or the cerebellum had no effect 

(Santarelli et al., 2003). 
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The above experiments suggest that neural progenitor cell proliferation, and 

possibly neurogenesis, is an important process for the recovery from depression. 

It also implies that the control of cell proliferation of the neural progenitor cells 

can be regulated by the serotonergic systems as on of the antidepressants used 

in the study was the SSRI, fluoxetine. Studies show that 5-HT depletion can 

cause a decrease in neurogenesis at both the SVZ and the SGZ and preferential 

activation or blocking of some 5-HT receptors was able to regulate the neural 

progenitor cell proliferation (Brezun and Daszuta, 1999; Banasr et al., 2004; Jha 

et al., 2008).  

 

With the development of selective agonists and antagonists against 5-HT 

receptors, these molecules can be used to preferentially activate and block 

specific subtypes of 5-HT receptors. These agonists and antagonists have been 

used as a tool to study the effects of activation and blocking of these receptors in 

an attempt to assess their effect on neural progenitor cell proliferation. It has 

been shown that administration of 8-OH-DPAT increases neural progenitor cell 

proliferation in rats, which the authors attributed to activation of 5-HT1A 

heteroreceptors (Banasr et al. 2004). Blockade of 5-HT1A receptors using the 

antagonists  1-(2-Methoxyphenyl)-4-(4-phthalimidobutyl)piperazine hydrobromide 

(NAN-190), 4-(2'-methoxy-phenyl)-1-[2'-(n-2"-pyridinyl)-p-iodobenzamido]-ethyl-

piperazine (p-MPPI) and N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N-(2-

pyridyl)cyclohexanecarboxamide (WAY-100635) can decrease cell proliferation 

(Radley and Jacobs, 2002). However, 8-OH-DPAT has been found to also be a 
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partial agonist at 5-HT7 receptors, which complicates the interpretation of the 

results (Wood et al., 2000). It has also been suggested that the effects of the 

increase in number of BrdU labelled cells indicate an increase in the rate of cell 

cycling rather than an increase in the total pool of proliferating cells (Banasr et 

al., 2004). The effects of 5-HT acting on the neural progenitor cells are 

suggested to be local as raphe neurons transplanted into the hippocampal 

regions can increase neural progenitor cell proliferation (Brezun and Daszuta, 

2000). The 8-OH-DPAT-induced newly divided cells are able to mature and 

differentiate into neurons (Banasr et al., 2004).  

 

Besides the 5-HT1A receptor, the cell proliferation effects of other subtypes of 5-

HT receptors have also been studied. 5-HT1B and 5-HT2C receptor agonists 

failed to increase neural progenitor cell proliferation, however, the 5-HT1B 

receptor agonist, sumatriptan, restored parachlorophenylalanine (PCPA) induced 

decreases in cell proliferation back to control levels suggesting that the 5-HT1B 

heteroreceptors also contribute to the increase proliferation (Banasr et al., 2004). 

Acute treatment with the 5-HT2A/2C receptor antagonist ketanserin reduced 

proliferation of neural progenitor cells (Banasr et al., 2004; Jha et al., 2008). As 

ketanserin’s affinity for 5-HT2A receptors is higher than for 5-HT2C receptors, it 

has been suggested that the decrease is caused by the blockade of the 5-HT2A 

receptor (Banasr et al., 2004). However, upon chronic treatment for 7 days with 

ketanserin neural progenitor cell proliferation rate increased (Jha et al. 2008). 

This phenomenon may be attributed to the downregulation of 5-HT2 receptor 
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expression upon chronic treatment with the antagonist as has been previously 

observed in other systems (Toth and Shenk, 1994). Further evidence points 

towards 5-HT2A receptor blockade contributing to increased proliferation as 

treatment with antisense to 5-HT2A receptors produce mice that display 

behaviours consistent with an antidepressant effect suggesting that 5-HT2A 

receptors may play a more important role in regulation of neural progenitor cell 

proliferation (Sibille et al., 1997). 

 

These activations and inhibitions of neural progenitor cell proliferation through 5-

HT receptor-mediated pathways have been suggested to be due to a 

convergence of the downstream signaling pathway with neuronal growth factors 

(Cowen et al., 2007). It has been suggested that the activation of some 5-HT 

receptor subtypes can either activate regional expression of growth factors such 

as IGF-1, FGF-2 and S-100β or activation of the Akt and ERK pathways, which 

have been suggested to be involved in neurogenesis (Lauder, 1993; Lambert 

and Lauder, 1999; Cowen et al., 2007; Aberg et al., 2003). 
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1.4 Hypothesis and Aim 

 

SSRI-based antidepressants used to treat depression have triggered the 

interesting phenomenon of increased NSPC proliferation and neurogenesis. This 

is not a side effect of the antidepressant treatment but rather the NSPC 

proliferation and neurogenesis is a requirement for the behavioral recovery of the 

depressive symptoms. This suggests the regulation of NSPC proliferation and 

neurogenesis by 5-HT release, 5-HT receptor subtype activation and SERT 

reuptake. Also, that 5-HT is a signaling molecule synthesized early in 

development may also suggest its role in stem cell proliferation and maturation. 

The requirement for NSPC proliferation and neurogenesis underlying the 

behavioural effects of depression treatments further suggests that the NSPCs 

may be participating in regenerating impaired neural networks. It also implied that 

the NSPCs may be constantly regenerating in the adult brain, but at a slower rate 

as compared to embryonic development. All these lines of evidence suggest that 

a control mechanism may be present to activate NSPC proliferation and 

neurogenesis as and when required. This activation may require either 

intercellular signals or signals generated from the neural networks involving 5-

HT.  

 

This thesis aims to identify the 5-HT receptors and other related proteins of 

serotonergic systems that are involved in the regulation of NSPC proliferation. As 

many antidepressant treatments increase availability of 5-HT, this thesis 
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questions whether serotonergic neurons are directly acting on the NSPCs. The 

focus will be on which of the 5-HT receptor subtypes are expressed on the 

NSPCs and which of these receptor subtypes are involved in the regulation of 

NSPC proliferation. With the recent discovery of neuronal TPH and the finding 

that embryonic stem cells also express TPH, the notion of NSPCs synthesizing 

5-HT and self-regulation of NSPC proliferation will also be examined. To allow a 

consistent pool of NSPCs to be used, this project also aims to establish a 

protocol for the cryopreservation of neural stem cells to allow storage of constant, 

high viability batches of the neural stem cells for research.  
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2. EFFECTIVE CRYOPRESERVATION OF NSPCS WITHOUT SERUM OR 

PROTEINS BY VITRIFICATION 

 

2.1 Introduction 

 

The extraction, expansion and maintenance of good quality and large quantities 

of primary NSPCs is both time consuming and expensive. While stem cells are 

able to self-renew, NSPCs cannot be maintained indefinitely by continuous 

passaging in culture. Long-term culture of NSPCs may cause telomere 

shortening in the NSPCs, which may lead to senescence and associated 

dysfunctions in proliferation and neurogenesis (Ferron et al., 2004; Wright et al., 

2006). While telomere shortening can be avoided by immortalization with 

overexpression of human telomerase reverse transcriptase (hTERT), long-term 

culture of human neural progenitor cells immortalized in this manner can result in 

accumulation of karyotypic abnormalities (Bai et al., 2004; Wang et al., 2004). 

Such chromosomal abnormalities can in turn lead to abnormal proliferation and 

transformation of progenitor or stem cell characteristics, although this is not 

necessarily an inevitable consequence of all immortalization protocols (Hodges 

et al., 2007; Li et al., 2005; Pollock et al., 2006). This could influence 

experimental results and their interpretation and, on clinical application, may be 

associated with increased risk of tumorigenesis. Therefore, the development of 

efficient cryopreservation techniques is essential as it ensures a constant supply 
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of cells and will be of benefit both to future clinical applications and current basic 

research into the functions and properties of NSPCs 

 
 

Cryopreservation of NSPCs with sterile and reproducible protocols will be a 

prerequisite for quality assurance, storage, and distribution of the cells for 

research and even clinical use (Milosevic et al., 2005). It is anticipated that sterile 

and xeno-free culture and storage protocols will be a requirement for the ultimate 

realization of the clinical application of NSPCs. As has been discussed in the 

fields of mesenchymal and embryonic stem cell research, the use of animal 

derivatives and other organic components increases the risk of contamination 

and batch-to-batch variability (Kassem et al., 2004; Mallon et al., 2006; Mannello 

et al., 2007). In view of the requirement for sterility, it have been demonstrated 

that cryopreservation of biological material by vitrification can be achieved using 

only non-biological additives (Kuleshova and Lopata, 2002; Kuleshova et al., 

2004; Magalhães et al., 2008; Tan et al., 2007; Wu et al., 2007).   

 

The NSPCs can be maintained and propagated as neurospheres in culture. Each 

neurosphere consists of an aggregate of heterogeneous neural progenitor cells 

at different stages of development. Recent studies have shown that the inner 

core of neurospheres contain a mixture of partially differentiated and 

undifferentiated cells, while the outer layer consists of more “stem-like” cells 

(Campos, 2004). Extracellular matrix (ECM) is also present and supports the 

growth of the NSPCs by allowing for more cell-cell and cell-ECM interactions. 
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The presence of these cell-cell and cell-ECM interactions are of particular 

interest as they may model the likely interactions within the in vivo NSPC niche, 

which contains progenitor cells at different stages of maturity (Molofsky et al., 

2003). However, the presence of such three dimensional structures may possess 

a problem for conventional cryopreservation methodologies, especially as 

NSPCs plated at the same time and under the same culture conditions grow into 

neurospheres which differ in size and morphology.  

 

Ideally, the cryopreservation techniques for storing NSPCs should allow for high 

cell viability, ability to maintain the sterility of the cultures, and should not impair 

the functional properties of the cells. Approaches to cryopreservation can be 

classified as freezing and vitrification. Cryoprotectants are used in both 

approaches. In the case of freezing, the aim is to reduce damage to cells by the 

formation of extracellular ice crystals rather than intracellular ice. In contrast, 

vitrification aims to avoid ice crystal formation on both cooling and warming by 

achieving glass-like solidification (Kuleshova and Lopata, 2002). Most studies 

have concluded that slow-cooling freezing protocols are suboptimal for 

cryopreservation of embryonic stem cells (Heng et al., 2005). There have been 

interesting reports on rapid-cooling freezing cryopreservation of human and other 

primate embryonic stem cells avoiding conventional slow-cooling methods by 

directly plunging the cells into liquid nitrogen (Fujioka et al., 2004; Reubinoff et 

al., 2001; Richards et al., 2004; Suemori et al., 2006; Zhou et al., 2004). Although 

these methodologies are preferred over slow-cooling, all of them employed 
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serum or proteins of human or animal origin. Additionally, there are various 

concerns over whether these protocols are able to achieve the glass-like vitreous 

state to cryopreserve the samples. 

 

Commercial stem and precursor cells are frequently cryopreserved by slow-

cooling freezing protocols (Milosevic et al., 2005). Such freezing protocols may 

be detrimental to sensitive cells due to the damage caused by ice formation. 

Slow-cooling protocols are reported to have long-lasting adverse effects on 

embryonic stem cells (Katkov et al., 2006). Commonly, dimethyl sulfoxide 

(DMSO) is used as a cryoprotectant and often fetal calf serum is also included 

(Carvey et al., 2001; Hancock et al., 2000; Milosevic et al., 2005). DMSO 

introduced as a cryoprotectant in many freezing protocols can, under some 

circumstances, impair survival and influence differentiation (Jacob and Herschler, 

1986). 

 

Vitrification procedures have been established in clinical application for the 

cryopreservation of oocytes for fertility treatment and vitrification protocols have 

been shown to be superior to slow-cooling freezing protocols for the preservation 

of cells, tissues and organs (Kuleshova et al., 1999; Kuleshova et al., 2007). 

Recently, vitrification protocols have been reported for the cryopreservation of 

human and other primate embryonic stem cells (Fujioka et al., 2004; Reubinoff et 

al., 2001; Richards et al., 2004; Suemori et al., 2006; Zhou et al., 2004). These 

protocols show improved survival compared to freezing protocols and did not 
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alter the pluripotency of the cells or produce karyotype abnormalities. Therefore, 

for the cryopreservation of embryonic stem cells, vitrification protocols are 

deemed to be superior to slow-cooling freezing protocols (Heng et al., 2005).  

 

Another limitation of most current cryopreservation protocols is that it is difficult to 

prevent contamination. In the field of assisted reproduction, it is well documented 

that pathogens survive cryopreservation and the cross-contamination can even 

occur during cryostorage (Mazzilli et al., 2006; Steyaert et al., 2000; Tomlinson 

and Sakkas, 2000). A simple strategy that has been developed to prevention 

contamination is the “straw-in-straw” arrangement (250 μl sterile straw placed in 

500 μl straw) which allows biological samples to be cooled by direct immersion in 

liquid nitrogen and warmed by direct immersion in a water bath. This technique 

allows the maximum temperature distribution during the cryopreservation and 

recovery process, which aids in increasing survival of the cells. This strategy, 

which involves placing an inner straw within a sealed outer sealed straw, have 

been successful employed in the cryopreservation of embryos and the 

vitrification of encapsulated hepatocytes (Kuleshova et al., 1999, 2004; Wu et al., 

2007). This protocol is both cost- and time-effective as it does not need 

expensive slow-cooling apparatus and requires only direct immersion into liquid 

nitrogen for cooling. 

 

Hence in the present study, attempts to develop a protein- and serum-free 

vitrification protocol to cryopreserve NSPCs in the form of neurospheres will be 
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made using solutions, which vitrified on cooling and devitrify on warming. The 

methodology of vitrification, slow-cooling and rapid cooling freezing will also be 

investigated. The vitrified neurospheres will be assayed for structural integrity of 

neurospheres, cell survival, karyotype, and expression of neural stem cell 

markers, proliferative capacity, and the potential for multipotent neural 

differentiation. 

 
 



2.2. Materials and Methods 

 

2.2.1. Animals 

 

The animals were obtained from the Centre for Animal Resources, National 

University of Singapore (NUS) and housed in the Animal Holding Unit, NUS, 

under a 12 hr light: 12 hr dark cycle, with ad libitum access to food and water. All 

animal procedures were conducted in accordance to the Institute Animal Care 

and Use Committee (IACUC) guidelines. 

 

2.2.2. Culture of NSPCs 

 

Pregnant C57BL/6J mice were deeply anaesthetized by intraperitoneal injection 

of pentobarbital (150 mg/kg) prior to dissection. The embryonic day 14-15 (E14-

15) fetuses were surgically extracted and decapitated. The brains were removed, 

and lateral ventricle wall and hippocampal tissues were dissected in Solution 1 

(1X Hank’s Balanced Salt Solution, HBSS, Invitrogen, CA, USA; 30mM glucose, 

AMRESCO, OH, USA; 15mM HEPES, Invitrogen; pH 7.5). The tissues were 

dissociated enzymatically in 0.25% Trypsin-EDTA (Gibco, CA, USA) at 37oC for 

30 minutes, with trituration after the first 15 minutes. To stop trypsin digestion, 

two times the volume of Solution 3 (0.6mM BSA, Sigma-Aldrich, MO, USA; 

20mM HEPES; 1X Earles Balanced Salt Solution, EBSS, Invitrogen; pH 7.5) was 

added and the digested tissues were sieved using 40μM cell strainers (BD 
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Biosciences, CA, USA). The collected cell suspension filtrates were centrifuged 

at 380xg for five minutes, followed by resuspension in 10ml of Solution 2 (0.5X 

HBSS; 0.9M sucrose, 1st Base, Singapore; pH 7.5) and centrifugation at 600xg 

for ten minutes. Subsequently, the cell pellet was resuspended in 2 ml of Solution 

3 and gently transferred drop-wise to 12 ml of Solution 3, which is then 

centrifuged at 380xg for seven minutes to recover the cells. The cell pellet was 

resuspended in neurosphere medium, containing Dulbecco’s modified Eagle’s 

medium (DMEM) with Ham’s nutrient mixture F12 (1:1 v/v, DMEM/F12, Gibco), 

supplemented with N2 supplement (Gibco), 20ng/ml epidermal growth factor 

(Invitrogen), 20ng/ml basic fibroblast growth factor (Chemicon, Tenecula, CA, 

USA), 100U/ml penicillin (Sigma-Aldrich) and 100ug/ml streptomycin (Sigma-

Aldrich). NSPCs were cultured in 6-well dishes in a humidified 95% air / 5% CO2 

incubator at 37oC.  

 

The NSPCs were cultured till the neurospheres became macroscopically visible. 

To passage the neurospheres, the neurospheres were collected and incubated in 

TrypLE™ (Invitrogen) at 37oC for two minutes. After two minutes, neurospheres 

were dissociated by gentle trituration and re-incubation for another three minutes. 

The trypsinisation was stopped by the addition of two times the volume of 

Solution 3. The single-cell suspension was then centrifuged at 380xg for five 

minutes, resuspended in 1ml of Solution 2, and followed by centrifugation at 

600xg for ten minutes. Subsequently, the cell pellet was resuspended in 200 µl of 

Solution 3 and gently transferred drop-wise to 1 ml of Solution 3, which is then 
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centrifuged at 380xg for seven minutes. The final cell pellet was resuspended 

and re-plated in fresh neurosphere medium. The cells were passage at least 

three times before using for any of the experiments to ensure that other cell types 

had been excluded from the culture system. 

 

2.2.3. Vitrification of neurospheres 

 

In the vitrification experiments, third passage neurospheres were taken through a 

complete cooling-warming cycle. Controls were neurospheres from the same 

culture processed in parallel to the vitrification group and included (a) untreated 

neurospheres and (b) a solution control in which the neurospheres were treated 

with the cryopreservation solutions but without undergoing the cooling-warming 

procedure. All experimental comparisons were performed at least in triplicate on 

three different batches of neurospheres isolated from fetuses from different 

pregnant females. For vitrification, neurospheres were first transferred to a 1.5 ml 

microcentrifuge tube and allowed to settle to the bottom of the tube. Culture 

medium was replaced with 10% (v/v) ethylene glycol (EG) in medium. The 

neurospheres were allowed to sink to the bottom of the tube to permit changing 

of the solution. The 10% (v/v) EG in medium was replaced with 25% (v/v) EG in 

medium, the tube was systematically tapped on the bench of the hood to 

facilitate sedimentation of the neurospheres. To minimize dilution of the final 

vitrification solution, the neurosphere pellet was then transferred to a second 

tube containing the final vitrification solution, which consisted of 40% (v/v) EG, 
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0.6M sucrose (the final concentration of 40% (v/v) EG, 0.6 M sucrose constitute 

39.63 wt% EG 0.535m sucrose resulting in a 57.95% (w/w) total solute 

concentration) in medium. Under the experimental conditions, 39.63 wt% EG 

0.535m sucrose is capable of undergoing vitrification. The neurospheres in the 

vitrification solution were aspirated into a 250 μl sterile plastic straw. The 250 μl 

straw was in turn placed inside a 500 μl sterile straw, which was then heat sealed 

using an impulse sealer. For vitrification the straws were then immersed into 

liquid nitrogen. As previously reported by Kuleshova et al. (1999), a cooling rate 

of 400 °C/min was achieved in the 250 μl straw within the 500 μl straw in the 

“straw-in-straw” configuration. Solution controls were exposed to the same 

solutions in a 15 ml centrifuge tube but without undergoing the cooling-warming 

procedure. The total duration of the procedure was approximately 11 min with the 

duration of each step being approximately being equal. All equilibration steps, 

including introduction to the vitrification solution, were performed at room 

temperature (23 ± 2°C). 

 

2.2.4. Freezing of neurospheres by rapid-cooling 

 

To determine whether the employment of vitrification solutions for 

cryopreservation of neurospheres was advantageous in comparison to other 

cryopreservation protocols, a rapid “freezing” protocol was evaluated. As in the 

vitrification protocol, the neurospheres were exposed to cryopreservation 

solutions in a stepwise manner, drawn into plastic straws and rapidly frozen by 
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immersion in liquid nitrogen (-196 °C). This stepwise equilibration procedure, 

including introduction of neurospheres to the final cryopreservation solution, was 

performed at room temperature (23 ± 2°C). However, the total solute 

concentration of the final cryopreservation solution was reduced by application of 

37% (v/v) EG, 0.6 M sucrose in medium. Lowering the total solute concentration 

should compromise the ability of the solution to support vitrification, a stable 

glass-like state (or amorphous state), and result instead in freezing by rapid-

cooling. This solute concentration appeared to still provide protection against cell 

death and reduce toxicity to NSPCs. Thus, we also compared 30% (v/v) EG, 0.6 

M sucrose, which conferred the benefit of further reducing the toxicity of the final 

cryopreservation solution to the cells. The total solute concentrations for 37 % 

(v/v) EG 0.6 M sucrose (36.8 wt% EG 0.535m sucrose) and 30 % (v/v) EG 0.6 M 

sucrose (30 wt% EG 0.535m sucrose) are 55.08% (w/w) and 48.34% (w/w), 

respectively. Both solutions vitrify on cooling but devitrify on warming. 

 

2.2.5. Freezing of neurospheres by slow-cooling 

 

Vitrification was also compared to a slow-cooling freezing protocol. For slow-

cooling freezing, third passage neurospheres were collected and re-suspended 

in medium supplemented with 10% (v/v) DMSO. The slow-cooling was as 

described by Milosevic et al. (2005) with minor modifications. Briefly, the 

resuspended neurospheres were transferred to a cryogenic vial (Nalgene, NY, 

USA) and were frozen to -70 °C with a cooling rate of 1 °C/min in a rate-
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controlled freezing system (Planer Kryo10, series III, Planner Products Ltd, UK). 

At the end of cooling cycle the samples were stored in liquid nitrogen (-196 °C). 

 

2.2.6. Warming of neurospheres and dilution of cryoprotectant 

 

To recover the neurospheres, the straws or vials containing the neurospheres 

were warmed by immersion for 30 s in a water bath at 38 ± 0.5 ºC with 

continuous agitation. As previously reported, a warming rate of 650 °C/min was 

achieved in the “straw-in-straw” configuration (Kuleshova et al., 1999). For 

recovery from vitrification and from rapid-cooling freezing, the neurospheres were 

then expelled into a 15 ml centrifuge tube containing 1 M sucrose in medium. 

The concentration of the sucrose was decreased to 0.7 M by dilution with 0.25 M 

sucrose in medium and then by 0.175 M on each subsequent step by dilution 

with medium. The total time for the dilution procedure was approximately 15 min 

(5 min for the first step and 2 min for each subsequent step). All treatments were 

performed at room temperature (23 ± 2°C). During the dilution process, 

sedimentation of neurospheres took place at the final dilution step at a low 

concentration 0.175 M of sucrose. The neurospheres were then allowed to sink 

and excess solution was removed. The neurospheres were then washed in 

neurosphere culture medium and placed in the incubator for 30 min after which 

they were transferred to fresh culture media for continuous culture. To ensure 

complete retrieval of neurospheres, the recovery solution was observed under 

the microscope. If neurospheres were found to be present, they were retrieved, 
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washed and added to the main pool. Supplementary flushing of the straw with 1 

M sucrose recovery solution did not retrieve any more neurospheres. For 

recovery from slow cooling, the samples were diluted 1:10 with neurosphere 

culture medium. The neurospheres were then retrieved in neurosphere culture 

medium and cultured routinely until further analysis. 

 

2.2.7. Observation of neurosphere integrity and measurement of cell 

viability 

 

Each sample was examined before and after vitrification by optical microscopy 

for the presence of damaged neurospheres and free cells. Survival after thawing 

was measured after overnight recovery using a LIVE/DEAD Viability/Cytotoxicity 

Kit (Invitrogen) according to the manufacturer’s instructions. In brief, the 

neurospheres were incubated with a cocktail of calcein AM and ethidium 

homodimer-1. In live cells, the non-fluorescent calcein AM is converted to green-

fluorescent calcein, after the acetoxymethyl ester is hydrolyzed by intracellular 

esterases. The red-fluorescent ethidium homodimer-1 on the other hand is 

actively excluded by live cells and so only accumulates in dead cells where it 

labels the nucleic acids in the nucleus. The labelled neurospheres were imaged 

by sequential scanning using confocal microscopes (LSM510 META, Carl Zeiss 

Microimaging GmbH, Germany and Fluoview 1000, Olympus, Japan). The live 

neurospheres were optically sectioned with z-axis steps of 5 μm to take 16 to 28 

confocal micrographs of each neurosphere for cell counting. An investigator blind 
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(with special thanks to Lee KH) to the treatment conditions counted the number 

of dead cells (red) and live cells (green). For each neurosphere, 5 areas outside 

of the necrotic core were randomly selected for counting. Each area counted 

contained at least 200 cells. In total, at least 1,000 cells were counted for each 

neurosphere. 

 

To verify the cell viability obtained by counting cells from optical sections of 

images, confocal images of cells from dissociated neurospheres were obtained 

for the control and vitrification group. Neurospheres were dissociated with 0.25% 

trypsin-EDTA for 5 min at 37°C. The reaction of trypsin-EDTA was stopped by 

adding fresh neurosphere medium. Cells were stained with LIVE/DEAD 

Viability/Cytotoxicity Kit and confocal images obtained. Additionally, the viability 

of cells in neurospheres was measured quantitatively by using an automated cell 

viability analyzer (Vi-CELL, Beckman Coulter, Inc., CA, USA). Control and 

vitrified neurospheres were dissociated by trypsin-EDTA. The sample cup 

containing cell suspension was loaded onto the Vi-CELL. The Vi-CELL system 

utilizes the trypan blue dye exclusion method to determine cell viability and 

provides precise, unbias automated cell counting from 50 images within 2 min. A 

sample size of 4 x 105 to 11 x 105 cells were analysed for viability in each count. 
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2.2.8. Karyotyping of NSPCs  (in collaboration with Assoc Prof Hande MP 

and Dr Poonepalli A) 

 

The cryopreserved neurospheres were tested for chromosomal abnormalities by 

karyotyping as previously described (Hancock et al., 2000). Briefly, the 

neurospheres were treated with 7 mg/l colcemid (Sigma-Aldrich) three days post 

recovery from vitrification in order to arrest cells at the metaphase stage. The 

neurospheres were then dissociated to single cells using 0.25 % of trypsin-EDTA 

(Invitrogen). The NSPCs were recovered by centrifugation and the cytoplasm 

osmotically expanded in 0.03M sodium citrate solution. The cells were then fixed 

with 3:1 methanol: glacial acetic acid and spread onto a Superfrost Plus slide 

(Esco, Portsmouth, USA). The chromosomes were stained using DAPI. Twenty 

metaphase spreads per sample were evaluated for chromosomal 

rearrangements and the chromosome number and integrity were analyzed. 

 

2.2.9. Assay for NSPC Markers 

 

To determine whether the vitrification affected the NSPC state, dissociated 

NSPCs were plated on poly-L-ornithine/fibronectin-coated coverslips in a 

monolayer and maintained for 3 days in neurosphere medium. The NSPCs were 

then fixed by treatment with 4% paraformaldehyde for 20 min. Immunostaining 

was conducted sequentially using anti-Sox2 (AB5603, Chemicon) and anti-nestin 

(MAB353, Chemicon) antibodies for identification of neural stem or progenitor 
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cell markers. Fluorescence-conjugated Alexa Fluor secondary antibodies 

(Invitrogen) were used to visualize the primary antibodies and the coverslips 

were counterstained with DAPI in Prolong Antifade Gold mounting medium 

(Invitrogen). The immunostained cells were then imaged by sequential scanning 

with a confocal microscope (LSM 510, Carl Zeiss Microimaging GmbH). 

 

2.2.10. Cell Proliferation Assay 

 

In order to assay the rate of cell proliferation of the NSPCs, the control 

neurospheres were washed thoroughly using culture medium, prior to 

dissociation and staining, mimicking the dilution process of the vitrified group for 

procedure consistency. The neurospheres were dissociated using 0.25% trypsin-

EDTA solution and the cells were replated on poly-L-ornithine/laminin-coated 

coverslips. The cells were allowed to adhere to the coverslips and 5-bromo-2′-

deoxyuridine (BrdU; Sigma-Aldrich, MO, USA) was then added to the culture 

medium to a final concentration of 10 µM and incubated with the dissociated 

NSPCs for 24 h. The cells were then fixed with 4% paraformaldehyde for 20 min. 

Immunostaining was conducted to detect the BrdU incorporation using an anti-

BrdU antibody (1:100, BRD.3, Neomarkers, Lab Vision Corporation, CA, USA) 

and detected using Alexa Fluor 555 conjugate secondary antibody (Invitrogen). 

The cells were counterstained with DAPI in the mounting medium to reveal all 

nuclei. The cells were imaged by sequential scanning with a confocal microcope 

(Fluoview 1000, Olympus, Japan). An investigator blind (with special thanks to 
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Lee KH) to the treatment conditions counted the number of BrdU-immunoreactive 

cells and DAPI-positive nuclei and the number of BrdU-positive cells was 

expressed as a percentage of the total cell count. 

 

2.2.11. Assay for Multipotent Differentiation 

 

To assay for multipotent differentiation into neurons, astrocytes, and 

oligodendrocytes, dissociated NSPCs were plated on poly-L-ornithine/laminin-

coated coverslips. Differentiation was induced with 0.5% fetal calf serum 

(Hyclone Laboratories Inc., UT, USA) in neurosphere medium without EGF and 

bFGF. After 1 day, the medium was replaced with DMEM/F12 with N2 

supplement and the cells were allowed to differentiate for another 6 days. The 

differentiated cells were then fixed by treatment with 4% paraformaldehyde for 

20min. Immunostaining was conducted sequentially using an anti-MAP2a+b 

antibody (MAB378, Chemicon) for identification of neurons, an anti-glial fibrillary 

acidic protein (GFAP) antibody (Z0334, Dako, Denmark) for identification of 

astrocytes and an anti-CNPase antibody (MAB326R, Chemicon) for identification 

of oligodendrocytes. Fluorescence-conjugated Alexa Fluor secondary antibodies 

(Invitrogen) were used to visualize the primary antibodies and the coverslips 

were counter-stained with DAPI. The differentiated cells were then imaged by 

sequential scanning with a confocal microscope (Fluoview 1000, Olympus). The 

numbers of neurones, oligodendrocytes and astrocytes were counted by an 
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investigator blind (with special thanks to Lee KH) to the treatment and expressed 

as a percentage of the total cell count. 

 

2.2.12. Statistical analysis 

 

All statistical analyses were performed using SPSS version 12 (SPSS Inc., 

Chicago, IL, USA). Data are expressed as mean ± SEM. Statistical analysis was 

by Student’s t-test comparison with the controls. In case of statistically significant 

differences, ANOVA was used to determine which groups statistically differed 

from each other. Differences were considered significant if P < 0.05. 

 



2.3. Results 

 

2.3.1. Effects of vitrification on neurosphere integrity and viability 

 

The integrity of neurospheres was preserved by vitrification. Figure 2.1 shows 

samples of neurospheres before (A) and after (B) vitrification sampled from the 

total population of neurospheres vitrified (C). All the neurospheres recovered 

from vitrification remained intact and no remaining free cells were found in the 

decanted recovery solution indicating that the vitrified neurospheres were not 

destroyed by the vitrification process (Fig. 2.1B,C). Additionally, the vitrification 

procedure improved the quality of the culture as free cells, which were not 

capable of forming neurospheres were removed during the vitrification 

procedure.  

 

After overnight recovery, the vitrification solution alone (Fig. 2.2B) did not have 

any appreciable adverse effect on the structural integrity of the neurospheres on 

visualisation by confocal microscopy as compared to that seen in the untreated 

control samples (Fig. 2.2A,B). A small number of red-fluorescent dead cells were 

evident in both untreated and vitrification solution treated neurospheres but there 

was no significant effect of vitrification on cell survival compared to the untreated 

group (Fig. 2.2A,B inset; Fig. 2.2D). 
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Figure 2.1. Photomicrographs showing the structural integrity of neurospheres 
undergoing a vitrification-warming cycle. Transillumination optical microscopy 
images of neurospheres sampled from (A) untreated control culture prior to vitrification 
and (B) immediately after warming following vitrification. (C) Reflectance optical 
microscopy image with white-light epillumination of the total population of neurospheres 
vitrified in a representative experiment immediately after warming following vitrification. 
The scale bars indicate 250 μm in A and B and 7 mm in C. (published in Cryoletters 
28(6), 445-460) 
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Cell suspension control                                Cell suspension vitrified 

 
 
Figure 2.2. Short-term and long-term cell viability and structural integrity of 
neurospheres undergoing vitrification. Confocal micrographs of representative 
neurospheres (A) in untreated control culture, (B) after treatment with the 
cryopreservation solutions without undergoing the cooling-warming procedure and (C) 
after recovery from a complete cooling-warming cycle. The neurospheres were labelled 
with a LIVE/DEAD Viability/Cytotoxicity kit. Green fluorescence indicates live cells, while 
red fluorescence indicates dead cells. The presence of small numbers of red-fluorescent 
dead cells is evident at higher magnification (inset boxes). (D) Viability was quantified by 
counting the number of live cells and expressing it as a percentage of the total cells. The 
data are mean ± SEM of three replicates. There were no significant differences. 
Confocal micrographs of neurospheres in (E) untreated control culture and (F) 3 weeks 
after recovery from a complete vitrification-warming cycle taken at matched time points. 
The scale bars represent 100 μm. (G,H) Cell suspension from dissociated neurospheres 
showing the viability of cells. G – untreated control; H – vitrified samples after recovery 
from a complete cooling-warming cycle. Images A,B,C,D,G,H were taken on the next 
day following treatment. (published in Cryoletters 28(6), 445-460) 
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Likewise, structurally the vitrified neurospheres (Fig. 2.2C) showed no significant 

difference from those untreated and treated only with the cryopreservation 

solutions. Again a small number of red-fluorescent dead cells were evident in the 

vitrified neurospheres (Fig. 2.2C inset) but the LIVE/DEAD assay did not reveal 

any significant effect of vitrification on viability, which was 96.5 ± 0.72 % (mean ± 

SEM) after vitrification and 97.6 ± 0.96 % in untreated control culture (Fig. 2.2D). 

Similarly, cells from dissociated neurospheres from both the control and vitrified 

samples also showed high viability (Fig. 2.2G,H). 

 

The measures of cell viability obtained through counting of cells from confocal 

optical sections were further confirmed by the quantitative data obtained from 

dissociated neurospheres with a Vi-CELL Cell Viability Analyzer. The Vi-CELL 

analysis reported 89.9 ± 2.3% viability in control samples and 88.7 ± 1.3 % 

viability in samples vitrified at passage three (P3). Vitrification of cells from 

advanced passages (P5 and P6, n=3) did not significantly alter viability with 89.3 

± 1.8% viability in control and 89.2 ± 5.1 % viability in vitrification group. 

Although, the viability recorded by the LIVE/DEAD assay in the intact 

neurospheres was marginally higher than that reported by the Vi-CELL analysis 

in dissociated neurospheres, all three approaches confirmed that the viability of 

the cells in the vitrified samples did not differ from that of the cells in the 

untreated control cultures. 
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After 3 weeks in culture following recovery from vitrification and, prior to 

passaging, neurospheres were again sampled (Fig. 2.2F). The structural integrity 

of the neurospheres was maintained. Overall cell viability in the intact 

neurospheres had declined to approximately 80 %, even in the untreated controls 

(Fig. 2.2E), however there was no difference in the cell viability in the 

neurospheres from the untreated control culture and the vitrified samples (Fig. 

2.2E,F). 

 

Thus, three methods, namely, cell counts from confocal optical sections, confocal 

images of stained cells from dissociated neurospheres and cell viability obtained 

with a Vi-CELL analyzer have shown no significant effects of vitrification on 

neurosphere viability. 

 

2.3.2. Effects of different cryopreservation techniques on neurosphere 

integrity and viability 

 

Vitrification was compared to both rapid-cooling freezing and the more commonly 

applied slow-cooling freezing method of cryopreservation. Rapid-cooling freezing 

with 37% (v/v) EG, 0.6 M sucrose in medium disrupted the structure of the 

neurospheres (Fig. 2.3B). The disruption of the structural integrity of the 

neurospheres was even more severe on slow-cooling freezing (Fig. 2.3C). 

Despite the structural disruption during rapid-cooling freezing the LIVE/DEAD 

assay only revealed occasional red-fluorescent dead cells and there was no
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Figure 2.3. Comparison of the cell viability and structural integrity of 
neurospheres undergoing cryopreservation by various methods. Confocal 
micrographs of representative neurospheres (n=3): (A) untreated, (B) after recovery from 
rapid-cooling freezing in liquid nitrogen in 37% (v/v) EG, 0.6 M sucrose and (C) after 
recovery from conventional slow-cooling freezing in 10% (v/v) DMSO. The neurospheres 
were labelled with a LIVE/DEAD Viability/Cytotoxicity kit. Green fluorescence indicates 
live cells, while red fluorescence indicates dead cells. The structural integrity of the 
neurospheres is compromised in (B) and (C); the arrows indicate compromised integrity 
of neurospheres most likely caused by formation of ice. In (C) the neurospheres were 
fragmented. In (B) the presence of small numbers of red-fluorescent dead cells is 
evident at higher magnification (inset). In (C) large numbers of red fluorescent dead cells 
are evident. The scale bar for A and C represents 100 μm, while that for B represents 50 
μm. (D) Viability was quantified by counting the number of live cells and expressing it as 
a percentage of the total cells. The data for the untreated control and vitrified group from 
Figure 2.2 are shown for comparison. The data are mean ± SEM of three replicates. * P 
< 0.001 Student’s t-test against untreated control. (published in Cryoletters 28(6), 445-
460) 
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significant decrease in viability compared to the untreated and vitrified groups 

(Fig. 2.3B inset; Fig. 2.3D). In contrast, slow-cooling freezing greatly increased 

the number of red-fluorescent dead cells and cell viability fell significantly to 65.4 

±3.8 % (p < 0.001; Fig. 2.3C,D). 

 

As 37% (v/v) EG, 0.6 M sucrose in medium appeared to protect against cell 

death, although not against loss of the structural integrity of the neurospheres, 

we also compared rapid-cooling freezing at lower solute concentration, 30% (v/v) 

EG, 0.6 M sucrose in medium. There was markedly increased cell death 

(77.1%±4.5; p < 0.001) with 30% (v/v) EG, 0.6 M sucrose compared to 37% (v/v) 

EG, 0.6 M sucrose (Fig. 2.4). 

 

2.3.3. Karyotyping of neurospheres after vitrification 

 

To investigate whether the process of vitrification causes any chromosomal 

abnormalities in NSPCs, the vitrified neurospheres were karyotyped. A total of 20 

metaphase spreads were analyzed in each sample. All samples displayed a 

complete set of 40 chromosomes without any structural deviation from the norm 

for murine cell karyotypes. Figures 2.5 show representative sets of chromosomes 

from untreated and vitrified NSPCs. 
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Figure 2.4. Comparison of the cell viability and structural integrity of 
neurospheres undergoing rapid-cooling freezing with different total solute 
concentrations. Confocal micrographs of representative neurospheres recovered from 
rapid-cooling freezing in liquid nitrogen in 30% (v/v) EG, 0.6 M sucrose (A, A’) and (B, 
B’) 37% (v/v) EG, 0.6 M sucrose. The neurospheres were labeled with a LIVE/DEAD 
Viability/Cytotoxicity kit. Green fluorescence indicates live cells, while red fluorescence 
indicates dead cells. There are more dead cells present in (A) than in (B). The scale bar 
represents 100 μm. (published in Cryoletters 28(6), 445-460) 
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Figure 2.5. Karyotyping of NSPCs in untreated and vitrified neurospheres. 
Representative examples of metaphase spreads from (A) untreated neurospheres and 
(B) neurospheres after recovery from a complete vitrification-warming cycle. 
Chromosomal number and structural integrity of the chromosomes from the untreated 
and vitrified neurospheres were analysed to identify possible chromosomal abnormalities 
due to the vitrification process. (C)  A typical alignment of the chromosome pairs of a 
vitrified sample. There is no evidence of chromosomal abnormality. (published in 
Cryoletters 28(6), 445-460) 

75 
 
 



2.3.4. Effects of vitrification on expression of stem cell markers 

 

To investigate whether the process of vitrification had an effect on the stem or 

progenitor cell state of NSPCs, expression of the neural stem or progenitor cell 

markers, nestin and Sox2, was assayed. The cells were plated on poly-L-

ornithine and fibronectin-coated coverslips and allow to attached and recover for 

3 days. The vitrified NSPCs were found to express nestin and Sox2 (Fig. 2.6A). 

To investigate whether the NSPCs would lose their stem/progenitor cell state 

upon further passaging, the neurosphere cultures were passaged three times 

and the assay was conducted again. After three passages, the NSPCs were still 

found to express nestin and Sox2. This indicates that the neural stem or 

progenitor cell state was maintained for at least three passages after vitrification 

(Fig. 2.6B). 

 

2.3.5. Effect of vitrification on the rate of proliferation 

 

The proliferation rate of the vitrified NSPCs was compared with the untreated 

group by a BrdU incorporation assay. The proliferation rate over 24 h was 

calculated as the percentage of BrdU-immunoreactive cells in the total DAPI-

stained cell count. Vitrification did not significantly alter the proportion of cells 

labelled with BrdU compared to the untreated control (Fig. 2.7). Quantification of 

the BrdU-positive cells did not reveal any significant change in the rate of 

proliferation in vitrified NSPCs compared to the untreated control (Fig. 2.7C). 
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Figure 2.6. Vitrified NSPCs maintain expression of NSPC markers. Vitrified NSPCs 
were plated as a monolayer and immunostained using anti-nestin (green) and anti-Sox2 
(red) antibodies. NSPCs cultured (A) after vitrification and (B) three passages after 
vitrification. All cells were double-stained for nestin and Sox2. Representative examples 
of double-stained cells at higher magnification are inset. The scale bar represents 50 
μm. (published in Cell Transplantation 18, 135-144) 
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Figure 2.7. BrdU cell proliferation assay of NSPCs after vitrification. NSPCs 
dissociated from neurospheres (A) untreated, and (B) after recovery from a complete 
vitrification–warming cycle. The dissociated cells were plated on poly-L-ornithine and 
laminin coated coverslips and assayed for proliferation by BrdU incorporation assay. The 
cells with BrdU incorporation were identified using an anti-BrdU antibody (red) and the 
cell nucleus were counterstained with DAPI (blue). Representative examples of BrdU 
positive cells at higher magnification are inset. The scale bar represents 80 μm. (C) The 
number of cells undergoing division within 24 h was counted and expressed as a 
percentage of the total DAPI-positive cell count. The data are mean ± SEM of five 
replicates. There were no significant differences. (published in Cell Transplantation 18, 
135-144) 

78 
 
 



2.3.6. Multipotent Differentiation after Vitrification 

 

The neurons, astrocytes, and oligodendrocytes were identified by 

immunostaining with cell type-specific markers (Fig. 2.8). Both untreated and 

vitrified NSPCs differentiated into cells expressing either GFAP or MAP2a+b and 

GFAP or CNPase (Fig. 2.8A-D). The number of each of the three cell types was 

quantified as a percentage of the total cell number counted by DAPI counter 

staining. Both untreated and vitrified NSPCs were able to differentiate into 7–

11% neurons, 80–86% astrocytes, and <1% oligodendrocytes (Fig. 2.8E). There 

were no significant differences in the differentiation in untreated and vitrified cells. 
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Figure 2.8. Multipotent differentiation of untreated and vitrified NSPCs. (A and C) 
untreated control; (B and D) NSPCs after recovery from a complete vitrification–warming 
cycle. The neurospheres were differentiated with 0.5% fetal calf serum and double 
immunostained for (A and B) astrocytes and neurons using anti-GFAP (green) and anti-
MAP2a+b (red) antibodies, respectively, and (C and D) astrocytes and oligodendrocytes 
using anti-GFAP (green) and anti-CNPase (red) antibodies, respectively. Nuclei were 
counterstained with DAPI (blue). The scale bar represents 20 μm. (E) Percentage of the 
neurons, astrocytes and oligodendrocytes differentiated from untreated and vitrified 
NSPCs expressed as a percentage of the total DAPI-positive cell number. The data are 
mean ± SEM of three replicates. There were no significant differences between the 
untreated and vitrified groups. (published in Cell Transplantation 18, 135-144) 
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2.4. Discussion 

 

The application of vitrification and freezing (slow-cooling and rapid cooling) in 

protein and xeno-free cryopreservation of NSPCs cultured as neurospheres was 

investigated. The vitrification protocol was found to be superior to both rapid-

cooling freezing and slow-cooling freezing for the preservation of the structural 

integrity of neurospheres. The cryopreservation of complex systems will be 

important for regenerative medicine but has been a challenge because freezing 

protocols can disrupt the three-dimensional structure of cell aggregates and 

tissues (Fashy et al., 2006). Future clinical applications of NSPCs may include 

the use of three-dimensional structures for nerve bridging or filling of lesion 

cavities in spinal cord injury or traumatic brain injury. It is therefore important to 

develop cryopreservation protocols that do not disrupt the integrity of three-

dimensional cell aggregates. Also, if cryopreservation protocols are to serve as 

the foundation for the development of protocols for clinical cell transplantation, it 

is also important that they should be free from foreign proteins and sera so as to 

avoid any possible risk of contamination (Mallon et al., 2006). Xeno-free 

cryopreservation protocols have sometimes replaced animal proteins with human 

proteins, but ideally even human proteins would be eliminated to prevent all 

possibility of contamination (Richard et al., 2004). 

 

The importance of the employment of vitrification solutions with sufficiently high 

total solute concentration has still not been widely appreciated. In the past, 
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cryopreservation solutions with lower solute concentrations than required to 

achieve vitrification were explored as a means of preventing ice formation during 

the cooling process only as the aim is to reduce the toxicity arise from high 

concentration of cryoprotectant. However, with the realization that low toxicity 

cryoprotectants such as sugars and polymers could be used to increase solute 

concentrations, higher solute concentrations can now be use to ensure 

vitrification and devitrification. EG is regarded as a promising cryoprotectant due 

to its high permeability and relatively low molecular weight (62 Da) (Valdez et al., 

1992). Sucrose is an easily soluble, cheap cryoprotectant additive with little or no 

toxicity and, in contrast to EG, is a non-penetrating cryoprotectant. Previously, 

reports have shown that the use of mixtures of penetrating and non-penetrating 

cryoprotectants in certain proportions is a feasible approach for cryopreservation 

of human oocytes, encapsulated hepatocytes, and self-assembled aggregates 

(Kuleshova and Lopata, 2002; Kuleshova et al., 2004; Wu et al., 2007; 

Magalhães et al., 2008). Although stepwise introduction and removal of 

cryoprotectants insured minimum osmotic changes to the neurospheres, direct 

immersion into liquid nitrogen in protocols employing solutions which do not form 

stable glass (either 30% (v/v) EG 0.6 M sucrose or 37% (v/v) EG 0.6 M sucrose) 

did not lead to complete protection. Thus, cryopreservation of the structure of the 

neurospheres was more efficient with the higher solute concentration of our 

vitrification solution. 
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Cell viability was an important assessment for the efficiency of the developed 

vitrification protocol. The cell viability was assayed semi-quantitatively by 

counting cells from optical sections, qualitatively via confocal images of stained 

cells from dissociated neurospheres and quantitatively using a Vi-CELL analyzer. 

For the semi-quantitative confocal imaging, the number of cells counted in each 

sampled area was not identical as the neurosphere structure varies with depth 

and the size of the neurospheres ranged from 90 to 924 μm in diameter such that 

smaller neurospheres could be imaged through their entirety, while larger 

neurospheres could only be imaged to a depth of approximately 140 μm (28 

optical sections at 5 μm z-axis intervals starting from approximately 5 μm into the 

neurosphere). In the case of larger neurospheres, the centre of some optical 

sections appeared dark as the core is compact and consists of necrotic cells to a 

large extend (Bez et al., 2003). The presence of the necrotic core is likely due to 

limitation of nutrient penetration during culture and is not an artefact of 

cryopreservation. That there was no rupture of the neurospheres by ice crystals 

observed suggests that the cryoprotectant permeated the entire neurosphere 

allowing the vitrification procedure to preserve even the core. To minimize 

sampling variability the areas sampled for counting in the larger neurospheres 

were in the outer regions of the neurosphere and avoided the necrotic core. 

Although counting the LIVE/DEAD cells in the intact neurospheres resulted in a 

higher estimate of viability than the Vi-CELL analysis of dissociated 

neurospheres, all three methods found no difference in cell viability in untreated 

control cultures and the cultures recovered after vitrification. 
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The neurospheres remain intact and that the cells within the intact neurospheres 

remain viable is most important for the perpetuation of neurosphere culture after 

recovered from vitrification. The measures of cell viability reported here are 

estimates of the viability of the cells within the recovered neurospheres. 

However, it is also interesting to know whether neurospheres are lost during 

vitrification. Since number of neurospheres in each sampled varied from 150 to 

300 neurospheres of various sizes, it was not feasible to count the neurospheres 

prior to vitrification as it was necessary to minimize the time of exposure outside 

the incubator (Fig. 2.1C). It was therefore not possible to directly measure the 

recovery of neurospheres after vitrification. However, microscopic observation of 

the recovery solution offered no evidence of fragment neurospheres or free cells 

indicating that all the vitrified neurospheres were recovered. Recovery was 

facilitated by tapping of the tube to accelerate sedimentation of the 

neurospheres. Supplementary flushing of the straw with recovery solution did not 

recover additional neurospheres. Together these observations indicate that there 

is near complete recovery of the vitrified neurospheres. On the other hand, as the 

culture appears healthier and devoid of free cells after vitrification, it seems that 

vitrification acted as a selection regime after which only healthy and intact 

neurospheres remained in the culture dish for subsequent cultivation while small 

debris, diffuse neurospheres with poor cell-cell contact and compromised free 

cells which were not able to form spheres were removed during sedimentation in 

the tubes containing 10% and 25% EG. 
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The present data on the integrity of neurospheres suggests that the vitrification 

protocol described here may be a useful starting point for the development of 

cryopreservation protocols for NSPCs in three-dimensional complex structures. 

As alkaline pH values greater than pH 9 have been shown to be detrimental to 

the extracellular matrix that holds NSPCs together as neurospheres (Sen et al., 

2004), the pH of the cryoprotectant solution may be crucial. The pH of the 

vitrification solution used in the experiment is around pH 8.0 ± 0.2. Also in this 

vitrification protocol, the time of exposure to liquid vitrification solutions never 

exceeds 3 minutes, except during the dilution steps on recovery after warming 

when exposure is not more than 15 minutes while sucrose containing solutions 

are employed in decreasing concentrations. 

 

Careful component selection is vital to avoid toxic effects in cryopreservation 

solutions. The NSPCs vitrification method tested in this paper employed the use 

of EG and sucrose as cryoprotectants to provide a low toxicity vitrification 

solution (Kuleshova et al., 2000; Valdez et al., 1992; Wu et al., 2007). In the 

current protocol, sucrose serves to dehydrate the cells by increasing the 

osmolarity of the vitrification solution and the use of EG in the vitrification protocol 

did not cause an observable toxic effect. To reduce the toxicity of the final 

solution, it might be thought that the total solute concentration could be reduced 

without harm to viability and integrity of structured cultures. However, this study 

proved this concept is not applicable to neurospheres. Although the results 
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obtained for rapid “freezing” using a solution of 3% reduction in total solute 

concentration showed no significant decrease in cell viability, further decrease in 

the total solute concentration resulted in a marked decrease in cell viability (Fig. 

2.4). The fundamental difference between rapid-cooling freezing and vitrification 

is that higher solute concentrations are used in vitrification to ensure amorphous 

state on cooling or warming while rapid-cooling freezing uses lower solute 

concentrations that permit the formation of ice crystals. However, as solute 

concentrations approach the vitrification threshold, ice formation on quenching 

reduces before ice formation on thawing. Therefore, the high cell viability shown 

in Figure 2.3B could have implied a near-vitrification reduction in ice formation 

during cooling-thawing cycle. A similar study was previously conducted a study 

on stepwise reduction of total solute concentration in cryopreservation solutions 

and its effects on cell survival and found that decreases in total solute 

concentration of 4% (v/v) from the vitrification threshold had no significant 

adverse effect on cell survival, whereas a decrease in total solute concentration 

of 7% (v/v) did, most probably due to the formation of ice during cooling-thawing 

cycle (Wu et al., 2007). Consistent results were obtained in the current study 

whereby a decrease in total solute concentration of 10% (v/v) has led to 

markedly reduced cell viability (Fig. 2.4A,A’). Rapid-cooling freezing itself is not 

conducive to maximal cell survival and therefore not a viable cryopreservation 

procedure for structured cultures such as neurospheres. 
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The absence of any evidence for changes in the karyotype suggests that 

vitrification of NSPCs is also not associated with chromosomal abnormalities. A 

potential application of vitrification would be to preserve NSPCs at early 

passages to avoid chromosomal abnormalities due to excessive passaging. 

Therefore, it is of importance that the process of vitrification itself does not cause 

chromosomal abnormalities. Post-thaw chromosome abnormalities of human 

cells are of great concern. For example, human oocytes have a complex 

subcellular structure, which can be damaged easily by brief cooling to room 

temperature (Bernard and Fuller, 1996; Pickering et al., 2003). This impact on 

the meiotic spindle and subsequent chromatid nondisjunction is a limitation for 

application of slow-cooling protocols (Bernard and Fuller, 1996). Most importantly 

an increase in chromosome abnormalities after fertilization of frozen and thawed 

human oocytes was also found (AlHasani et al., 1987; Bernard and Fuller, 1996). 

It has also been reported that vitrification does not cause chromosome 

abnormalities of human oocytes (Kuleshova et al., 1999). Meiotic normality and 

good preservation rates have also been achieved with vitrification of animal 

oocytes (Isachenko and Nayudu, 1999). 

 

Expression of nestin and Sox2, two commonly used neural stem or progenitor 

cell markers, was studied to ensure that the state of the NSPCs was not affected 

by vitrification. Both the markers were detected in NSPCs recovered from 

vitrification and also three passages after recovery from vitrification. This shows 

that the vitrification procedures did not alter the expression of these important 
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stem cell markers. There was also no evidence for stimulation of spontaneous 

differentiation of NSPCs following recovery from vitrification, which had been 

mentioned as a problem following cryopreservation of embryonic stem cells in a 

protocol involving the use of dimethylsulfoxide (DMSO) (Ji et al., 2004). This 

problem could be attributed to the role of DMSO in promoting differentiation, 

mechanical and osmotic stresses, and other chemical and physical factors 

(Buchanan et al., 2004; Ishiguro et al., 2004). Maintenance of progenitor or stem 

cell properties following vitrification is likely to be important in clinical application 

as expansion of the NSPCs will probably be required to reach the desired cell 

number for cell replacement therapy. 

 

It is essential that NSPCs maintain their multipotency after cryopreservation. 

Retention of the potential for differentiation is an important assessment because 

the multipotency of the NSPCs in neurospheres is sensitive to alteration of 

culture conditions. Furthermore, the ability of these NSPCs differentiate into all 

mature neural cell types for integration into existing neural networks is likely to be 

vital to transplantation for cell replacement therapy as different diseases may 

require the replacement of different cell types, for example oligodendrocytes 

would be required for cytotherapy for multiple sclerosis (Merrill and Scolding, 

1999) while neuronal differentiation would be required for repair of hypoxic and 

ischemic damage in the central nervous system (Park et al., 2002). The 

differentiation of vitrified neurospheres was assessed and it was observed that 

the capacity for mulitpotent differentiation was preserved. There was no 
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significant difference in the proportion of the three cell types between untreated 

and vitrified NSPCs. Thus, these results indicate that the vitrification process 

does not affect the multipotent differentiation of NSPCs 

 

Vitrification would offer a cost-effective alternative to slow-cooling freezing. The 

slow-cooling freezing method is inaccessible to many research laboratories as it 

requires expensive machinery in order to accurately maintain the cooling rate 

and it also has its limitations. In a recent study, the efficacy of different cooling 

rates for the cryopreservation of human embryonic stem cell (hESC) colonies 

was assessed (Yang et al., 2006). In this study, a controlled rate of 0.5°C/min 

combined with cryopreservation solutions comprising 10% DMSO and 30% fetal 

bovine serum was found to be optimal. This selected protocol resulted in a post-

thaw viability of 54% recorded on day 5 in culture that by day 9 had propagated 

to 80% of the initially preserved population. Although these hESC were found to 

be mainly undifferentiated and with normal karyotypes, with prolonged culture, 

non-induced differentiation still occurred. 

 

Another comprehensive study was conducted on the effectiveness of slow-

cooling method for cryopreservation of murine neural precursor cells (NPCs) 

(Milosevic et al., 2005). In this study, various combinations of cryopreservation 

solutions consisting of penetrating (DMSO, EG and glycerol) and non-penetrating 

cryoprotectants (trehalose) were assessed. To enhance survivability of NSPCs 

co-culture of NSPCs with fibroblasts growth factor-2 and epidermal growth factor 
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prior to “freezing” was employed. The percentage of surviving cells 24 h after 

thawing for NSPCs treated with 10% DMSO, 10% EG, 10% DMSO + 0.2M 

trehalose, and some other combinations added with caspase inhibitors was not 

significantly different from that of the untreated control. However, after 1 week of 

thawing, the percentage of surviving cells for all treated NSPCs was significantly 

lower than the control. The results showed that the freezing approach is not able 

to preserve cell survival at longer culture durations. A mere 25% of clonogenic 

survival observed in NSPCs treated with 10% DMSO and 10% glycerol 

(compared to control) has further substantiated the inability of freezing to 

preserve the colony forming ability of these cells. Here, we have shown that after 

3 weeks of continuous culture following vitrification cell viability was consistently 

preserved (Fig. 2.2E). This result suggests that the method presented here is 

better than those previously described and therefore suggest that vitrification 

may be an effective and feasible means to cryopreserve these sensitive cells. 

 

In this chapter, a cost-efficient and simple protocol for the cryopreservation of 

neurospheres by vitrification has been discussed. The rapid cooling freezing 

protocols did not allow the maintenance of the structural integrity of the 

neurospheres, suggesting that this approach could not be considered further for 

the cryopreservation of this, as well as other structured cultures. As there was 

severe structural disturbance and partial lost of cell viability, it might be 

concluded that conventional freezing is inappropriate for use in stem cells 

research. In contrast, vitrification preserved structural integrity of neurospheres 
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and cell viability. These cells recovered from the complete vitrification-warming 

cycle were free of chromosomal abnormalities, stem cell characteristics 

unchanged with the maintenance of their capacity for multipotent differentiation. 

Additionally, the employment of the “straw-in-straw” methodology also allows 

sterility to be maintained during the entire process. While it is uncertain whether 

neurospheres will be the preferred culture system for potential future clinical 

application of NSPCs (Jensen and Parmar, 2006), the ability to preserve the 

unsupported three-dimensional structure of neurospheres by vitrification 

suggests that this approach could be considered as a method to the preservation 

of NSPCs in three-dimensional microfabricated structures or scaffolds (e.g., 

nerve conduits for spinal cord repair) (Teng et al., 2002). With the complete 

avoidance of products of human or animal origin, this protocol can serve as 

starting point for development of protein- and serum-free vitrification protocols for 

the cryopreservation of human stem cells, especially human neural stem cells 

that may eventually be used in clinical settings. This established protocol will also 

be useful for the research which requires a constant supply of NSPCs in the 

subsequent chapters in the thesis. 



3. SEROTONERGIC FIBRES AND 5-HT RECEPTORS – IMPLICATIONS 

FOR NSPC PROLIFERATION 

 

3.1 Introduction 

 

Treatment with SSRI-based antidepressants has been shown to trigger increases 

in NSPC proliferation. This induction is likely brought about by the increased 

availability of 5-HT at the synapses due to the inhibition of the 5-HT reuptake 

inhibitors on the serotonergic neurons. However, the exact mechanism by which 

5-HT induces the increase in cell proliferation is not clear. 

 

It is conceivable that there may be two ways in which the 5-HT may transmit 

signals to the NSPCs to induce an increase in NSPC proliferation. (1) The 

increase in the availability of 5-HT at the serotonergic nerve endings may 

activate a downstream neural network which eventually reaches the NSPC and 

regulates its increase in NSPC proliferation. (2) The increase in the availability of 

5-HT at the serotonergic synapses may act directly on the NSPCs, suggesting 

that 5-HT is able to regulate NSPC proliferation directly. This scenario requires 

the presence of 5-HT receptors on the NSPCs to perceive the serotonergic 

signals. 

 

Hippocampus is found to be innervated by serotonergic neurons as suggested 

with early lesion experiments that show hippocampal 5-HT contents are greatly 
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reduced by lesioning of the raphe nuclei in rats (Jacobs et al., 1974). Further 

work by Moore and Halaris (1975) using autoradiography tracing of the 

serotonergic neuron projections from the raphe nuclei further confirm the 

presence of serotonergic innervations into the hippocampus. As the 

hippocampus is innervated by serotonergic neurons, the direct interactions of 

serotonergic synapses acting directly on the NSPCs will be explored. In order for 

the serotonergic synapses to be directly acting on the NSPCs, they must be 

located at or near the neurogenic regions of the brain. Investigations will be 

conducted on location of the serotonergic terminals in the SGZ and the SVZ to 

identify whether the serotonergic synapses are likely close to the neurogenic 

regions of the brain. At the serotonergic synapses, the 5-HT signal must also be 

able to be perceived by the NSPCs and trigger the increase in NSPC 

proliferation. Through in vitro isolation of primary NSPC cultures, the direct 

effects of 5-HT on the NSPCs will be studied and the 5-HT receptors subtypes 

expressed by the NSPCs will also be identified.  



3.2. Materials and Methods 

 

3.2.1. Tissue preparation 

 

Adult female C57BL/6J mice aged 6-8 weeks old were anaesthetized with an 

overdose of pentobarbital (Nembutal), then transcardial perfused with 4% 

paraformaldehyde in 0.1 M of phosphate buffer (pH 7.4). After which the brains 

were extracted and postfixed overnight in the same fixative. The forebrain 

containing the lateral ventricles and the hippocampi of the mice were then 

sectioned using a vibratome (Vibroslice, World Precision Instruments) at a 

thickness of 40 μm prior to immunohistochemical assays. The tissue sections 

stored in phosphate buffered saline (PBS) at 4°C until use. 

 

3.2.2 Immunohistochemistry 

 

To label the serotonergic nerve fibres, immunofluorescence labeling was carried 

out on the free- floating sections. The sections were first blocked with 10% goat 

serum before anti-serotonin antibody (1:100; MAB352, Chemicon, Temucula, 

CA) in 10% goat serum was added to the sections and incubated overnight at 

4oC. The secondary antibodies used was Cy2 labeled goat anti-rat (1:200, 

Jackson ImmunoResearch, PA, USA). The sections were mounted with Pro-Long 

Anti-Fade reagent (Molecular Probes, Invitrogen) before being coverslipped. The 
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sections were then imaged on a Laser Scanning Confocal Microscope (LSM 510, 

Zeiss MicroImaging GmbH). 

 

3.2.3 Cell proliferation assay of 5-HT treated NSPCs 

 

To determine whether exogenous addition of 5-HT to cultured NSPCs is able to 

influence cell proliferation rate; a cell proliferation assay was performed using the 

CyQuant NF Cell Proliferation Assay (Invitrogen). NSPCs were isolated as 

indicated in Section 2.2.2. Third passage neurospheres obtained were 

dissociated using the same procedure as for cell passaging. Resuspended single 

cells were sieved with 40 μM cell strainers and counted using a haemocytometer 

(Neubauer, Germany). NPCs were then plated at 1000 cells/well on poly-L-

ornithine (PLO, Sigma-Aldrich) and fibronectin (FN, Gibco) coated 96-well, black-

walled, flat transparent bottom culture dishes in neurosphere medium. The cells 

for each assay run were plated from the same batch of cells to maintain plating 

homogeneity. The cells were precultured for 72 hours prior to addition of 

treatment solution. Seventy two hours after addition of the 5-HT, CyQuant NF 

Cell Proliferation Assay reagents were added according to manufacturer’s 

instructions and incubated at 37ºC. After 1 hour incubation, the first reading was 

taken using a fluorescence plate reader (Infinite M200, Tecan, Zürich, 

Switzerland) at an excitation wavelength of 490nm and an emission wavelength 

of 530nm. Each treatment was done with three independent biological repeats 

and each biological repeat was conducted with three technical repeats. 
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3.2.4. Statistical Analysis 

 

After subtracting the background, the fluorescence intensity, which was linear to 

the cell number, was expressed as a ratio to the control without treatment and 

the SEM is calculated from three independent biological repeats. The 5-HT-

treated samples were compared with the control and analyzed using Student’s t-

test with P<0.05 was considered as statistically significant. All data are reported 

as mean ± SEM. 

 

3.2.5 RNA Extraction and Reverse Transcription PCR (RT-PCR) 

 

Total RNA was extracted, treated with DNaseI (DNase I recombinant, RNase-

free; Roche Diagnostic GmbH, Mannheim, Germany) and purified according to 

the manufacturer’s instructions for PureLinkTM Micro-to-Midi Total RNA 

Purification System (Invitrogen) from passage 3 NSPCs isolated from fetal 

hippocampal and SVZ from Section 3.2.3. Quantitation of RNA was performed 

with Quant-iTTM RNA Assay Kit (Invitrogen). Approximately 1 µg of total RNA was 

reverse transcribed with oligo(dT) primers using the ImProm-IITM Reverse 

Transcription System (Promega, WI, USA). 

 

The reverse transcribed cDNA was used as a template for PCR using AmpliTaq 

Gold DNA polymerase (Applied Biosystems) according to manufacturer’s 
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instructions. PCR primers were designed to be intron spanning to eliminate the 

presence of false positive from genomic DNA contamination. The primer 

sequences for the respective genes and their annealing temperature used were 

stated in Table 3.1. The PCR reactions were conducted at 94oC for 30 sec, 

annealing at the primers’ respective temperature for one min and 72oC for one 

min for 35 cycles. The PCR products were separated in 1.5% agarose gel, 

stained with ethidium bromide, and then visualized under UV irradiation.  

 



Table 3.1 – Primer sequence, annealing temperature and amplicon size of 5-HT receptors, SERT and Sox2 
 
Gene Forward Primer Reverse Primer Annealing 

Temperature 
Amplicon 

size 
5-HT1A receptor 5’-GGAGCGGGCACCAGCTTCGGAACA-3’ 5’-CACTGTCTTCCTCTCACGGGCCAA-3’ 62oC 203bp 
5-HT1B receptor 5’-AAGAAACTCATGGCCGCTAGGGAG-3’ 5’-GCGTATCAGTTTGTGGAACGCTTG-3’ 57oC 252bp 
5-HT1D receptor 5’-TACAAACACCTCAGAGCTACCAAGC-3’ 5’-TTTAAAGCCAGAGACAAAAAGAAACAG-3’ 59oC 251bp 
5-HT1F receptor 5’-CCTGCCACACCACGGTATTC-3’ 5’-TGATCGCAGCGATCACGA-3’ 60oC 200bp 
5-HT2A receptor 5’-GGGTACCTCCCACCGACAT-3’ 5’-AGGCCACCGGTACCCATAC-3’ 60oC 252bp 
5-HT2B receptor 5’-CAGAAGACATGTGATCACCTGATC-3’ 5’-TGTAATCTTGATGAATGCAGTAGCC-3’ 60oC 474bp 
5-HT2C receptor 5’-GCTCCGCTGGGCGATT-3’ 5’-CACAAGGAGTGAGCGCACC-3’ 60oC 251bp 
5-HT3A receptor 5’-GATCGGTACCCCCCTCATTG-3’ 5’-GTCCTGAGGTCCTCCAACATG-3’ 60oC 301bp 
5-HT3B receptor 5’-CAACGTAGTGATCCGCAGATGT-3’ 5’-CCGCTCCTCATAGAGGAATTTG-3’ 59oC 301bp 
5-HT4 receptor 5’-ATCGCATGAGGACAGAGACC-3’ 5’-GCCACCAAAGGAGAAGTTGC-3’ 62oC 400bp 
5-HT5A receptor 5’-GGCTCCACTGCTATTTGGCT-3’ 5’-CACGTATCCCCTTCTGTCTGG-3’ 60oC 303bp 
5-HT5B receptor 5’-TTCTACCTGCCTCTAGCGGTG-3’ 5’- GGCTGATGAGCTCCGTCAG-3’ 61oC 301bp 
5-HT6 receptor 5’-GTCCGGCGTCACCTTTTTC-3’ 5’-CAGTCACATACGGCCTGAGCT-3’ 60oC 318bp 
5-HT7 receptor 5’-GGCCTCGATCATGACCCTG-3’ 5’-CCTGGCGGCCTTGTAAATC-3’ 63oC 301bp 
SERT 5’-ACATCTGGCGTTTTCCCTACAT-3’ 5’-TTTTGACTCCTTTCCAGATGCT-3’ 58oC 525bp 
Sox2 5’-AAGTACACGCTTCCCGGAGGCTTG-3’ 5’-AGTGGGAGGAAGAGGTAACCAC-3’ 55oC 412bp 
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3.3. Results 

 

3.3.1 Serotonergic fibres are found in the neurogenic regions of the 

mouse brain 

 

To determine whether serotonergic fibres were present in the neurogenic regions 

of the brain where the NSPCs were found, we conduct immunohistochemistry on 

the neurogenic regions of the brain using anti-serotonin antibody. Results 

indicated that there were serotonergic fibres around the regions where NSPCs 

were normally located in both the subgranular zone (SGZ) in the dentate gyrus of 

the hippocampus (Fig. 3.1A) and the subventricular zone (SVZ) of the lateral 

ventricles (Fig. 3.1B). There were also areas of intense staining on the 

serotonergic fibres, which may suggest areas of high density of 5-HT. These may 

be the areas rich in serotonergic synapses and some of these areas are found 

closed to the SGZ and the SVZ regions (Fig. 3.1) 

 

3.3.2 5-HT is able to induce an increase in cell proliferation of cultured 

NSPCs 

 

The above results suggest the possibility that the serotonergic fibres may 

synapse or terminate at or close to the NSPCs and release 5-HT. This may be a 

plausible mechanism by which serotonergic signals regulate NSPC proliferation 

as suggested by the effects of treatment with SSRIs inducing increases in NSPC 

 99



Figure 3.1. Immunostaining of serotonergic fibres/terminals in the (A) subgranular zone of
the dentate gyrus and (B) subventricular zone. Serotonergic projections and serotonergic nerve
endings were immunostained using anti-serotonin antibody in the dentate gyrus of the hippocampus
and the SVZ region of the lateral ventricles. The sections were counter-stained with DAPI to locate
the position of the cells. The scale bar represents 10 μm.
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proliferation. Therefore to ascertain whether 5-HT could bring about an increase 

in NSPC proliferation, we isolated NSPCs from the hippocampus and the lateral 

ventricles of fetal C57BL/6 mice and subjected the cells to different 

concentrations of exogenous 5-HT. It was observed, visually and through cell 

proliferation assay, that by directly treating the cells with 1-10 µM of 5-HT were 

able to increase the cell proliferation by 20-30% as compared to control (Fig. 

3.2). However, concentrations higher than 10 µM caused a decrease in NSPC 

proliferation, which may be attributed to toxicity. 

 

3.3.3 5-HT receptors are expressed on NSPCs 

 

The presence of serotonergic fibres/terminals in the neurogenic regions of the 

brain and the ability of 5-HT to induce an increase in cell proliferation suggest 

that the NSPCs were able to pick up 5-HT signals. These data suggest the 

presence of 5-HT receptors expressed on the NSPCs. 

 

To determine the presence of 5-HT receptors and SERT on the NSPCs, reverse 

transcriptase PCR was employed to determine the transcriptional expression of 

the 5-HT receptors on the NSPCs. Primers were designed for the 14 subtypes of 

5-HT receptors namely, 5-HT1A, 1B, 1D, 1F, 2A, 2B, 2C, 3A, 3B, 4, 5A, 5B, 6, 7 

receptor and SERT. The RT-PCR was conducted using cultured hippocampal 

NSPCs and SVZ NSPCs total RNA as a template. The results shows that both 

hippocampal NSPCs and SVZ NSPCs expressed 5-HT1A, 1B, 1D, 1F, 2A, 2B,
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Figure 3.2. NSPC proliferation can be induced by 5-HT. NSPCs were plated at a density of
1000 cells per well in a 96 well dish and treated with different concentrations of 5-HT for 3 days
to observe the changes in the rate of proliferation. (A) Microscopy showing the density of cells
after 3 days of treatment between the untreated and the NSPCs treated with 10μM serotonin.
(B) CyQuant cell proliferation assay was conducted and the relative proliferation under the
different treatments were plotted against the control for both hippocampal (Hippo) and
subventricular zone (SVZ) NSPCs.
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2C, 3A, 3B, 4, 5A, 5B, 6, 7 receptor and SERT (Fig. 3.3). Expression of the 

NSPC maker, Sox2, was used to show that the population of cells in the 

neurospheres contained NSPCs.  

 103



Sox2

1A

H          S

2C

1B

1D

1F

3A

3B

4

5A

5B

6

7

SERT

H            S

Figure 3.3. Expression of 5-HT receptors in cultured neurospheres from E14 fetuses. RT-
PCR was conducted on total RNA isolated from cultured fetal neurospheres extracted from H –
hippocampus and S – subventricular zone of the lateral ventricles using specific primers
designed to amplify the various subtypes of 5-HT receptors and SERT. Sox2 is a marker that is
expressed in NSPCs. All amplicons of the expected size were sequenced to confirm their
identities.
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3.4. Discussion 
 

The results presented here suggest that serotonergic fibres in the neurogenic 

regions of the brain may directly interact with NSPCs. The NSPCs are suggested 

to be able to receive 5-HT signals using the host of 5-HT receptors subtypes they 

expressed as detected at transcript level. Exogenous addition of 5-HT to the 

primary NSPCs is able to increase in their proliferation although, at this point, it is 

not clear which of the receptors are involved in the regulation of the NSPC 

proliferation as a large number of 5-HT receptors are expressed by the NSPCs. 

 

Studies on the regulation of adult neural progenitor/stem cell proliferation and 

neurogenesis by antidepressants have focused on the roles 5-HT receptors and 

the 5-HT transporters. However, it is not known whether these effects are 

mediated by direct actions of 5-HT receptors expressed by the neural progenitor 

cells or by indirect effects through other synaptic pathways. Previous studies 

have provided some clue as to whether the serotonergic fibres are present in the 

hippocampus, however, their cellular resolution was usually too low to determine 

whether the fibres are close to or synapse at the NSPCs (Schmitt et al, 2007). 

Therefore, we determine if the serotonergic fibres were present at the neurogenic 

regions, namely the SGZ and the SVZ, of the brain near, and perhaps synapsing, 

on the NSPCs. The presence of these serotonergic fibres, suggests the 

possibility that the serotonergic fibres may act directly on the neural progenitor 

cells to bring about an increase in cell proliferation. This also suggests that the 

neural progenitor cells are able to pick up the 5-HT signals released from these 
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serotonergic fibres. In fact, exogenous addition of 5-HT was shown to increase in 

the NPC proliferation in vitro further pointing to the fact that these serotonergic 

fibres act directly on the NPCs. 

 

The NSPCs expressed the transcript for a large number of subtypes of 5-HT 

receptors. As the RT-PCR was done on the pool of NSPCs, it is unknown as to 

whether each of the NSPC expresses all the subtypes of 5-HT receptors assayed 

in the study. This will require single cell RT-PCR to provide such cellular 

resolution. Further detection and studies also need to be conducted to examine 

the protein expression and functionality of the 5-HT receptors in the NSPCs. 

However, it has been suggested that having a host of subtypes of 5-HT receptors 

will allow fine tuning of the response of the cell to the 5-HT signal depending on 

the amount of 5-HT available (Uphouse, 1997). The concentration of 5-HT at the 

synapse will also determine which of the receptors will be more preferential 

activated due to each of the 5-HT receptor have different affinity to the 5-HT. It is 

not hard to conceive that perhaps 5-HT at the basal level produces a certain 

functional signal whereas an increase in the availability or the release of 5-HT 

from neighboring serotonergic neurons may evoke an increase in NSPC 

proliferation rate. More work will have to be done to delineate the function of 

each of the subtype of 5-HT receptors and their role in regulation of NSPC 

proliferation. 

 



4. INDUCTION OF NSPC PROLIFERATION – EFFECTS OF 5-HT1A 

AND/OR 5-HT7 RECEPTORS 

 

4.1 Introduction 

 

In the previous chapter, it has been show that the exogenous addition of 5-HT 

can increase NSPC proliferation and it has also been suggested that NSPCs can 

receive 5-HT signals as they expressed a host of 5-HT receptors. From the time 

of the discovery that SSRI’s can increase NSPC proliferation, studies have 

suggested that specific activation some 5-HT receptor subtypes using agonists 

can also induced NSPC proliferation (Radley and Jacobs, 2002; Banasr et al., 

2004; Jha et al., 2008). However, no attempts were made to identify whether 

these agonists act directly on the NSPCs or activate the NSPCs via neural 

networks downstream of the serotonergic neurons.  

 

It has been shown that treatment with the 5-HT receptor agonist, 8-OH-DPAT, is 

able to increase NSPC proliferation rate in the neurogenic regions of the brain in 

mice (Banasr et al., 2004). 8-OH-DPAT is suggested to act specifically at 5-HT1A 

receptors to increase the cell proliferation. The 5-HT1A receptor has been 

reported to be expressed in limbic brain areas such as the hippocampus, lateral 

septum, cortical regions and mesencephalic raphe nuclei (Barnes and Sharp, 

1999). Functionally, the 5-HT1A receptor is a G-protein coupled receptor (GPCR) 

that is capable of causing neuronal hyperpolarization upon activation due its 
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coupling to the K+ channels (Nicoll et al., 1990). It is also known to negatively 

regulate adenylate cyclase in the hippocampus but not in the raphe nuclei 

(Clarke et al., 1996). 

 

However, the use of pharmacological agonist 8-OH-DPAT to activate the 5-HT1A 

receptor is not without caveats. It is found that 8-OH-DPAT is also a partial 

agonist at the 5-HT7 receptor (Wood et al., 2000). The 5-HT7 receptor is a 

GPCR that is highly expressed in the thalamus, hypothalamus and hippocampus 

with lower expression also found in the cortex and amygdala (To et al., 1995; 

Gustafson et al., 1996; Stowe and Barnes, 1998). The 5-HT7 receptor is known 

to stimulate adenylate cyclase through coupling with Gαs (Bard et al., 1993; 

Obosi et al., 1997). Due to the fact that 8-OH-DPAT also activates the 5-HT7 

receptors, it is conceivable that the increase in NSPC proliferation reported in 

Banasr et al.’s (2004) study may be also due to the activation of the 5-HT7 

receptor instead of the 5-HT1A receptor. Furthermore, there is evidence that  

adenylate cyclase activity increases cellular cAMP, which can potentially trigger 

the activation of ERK, which in turn leads to the activation of the cell proliferation 

pathway (Stork and Schmitt, 2002). 

 

It is also noted that both 5-HT1A receptors and 5-HT7 receptors are expressed in 

the hippocampus, which is one of the neurogenic regions in the brain. 

Serotonergic fibres are found to be present in the hippocampus near the dentate 

gyrus as evident in the immunostaining of serotonergic fibres near the 
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neurogenic regions of the brain in Chapter 3 and also by Schmitt et al., (2007) 

showing axonal projections in the dentate gyrus expressing serotonin 

transporters. This suggests the possibility that the serotonergic fibres act directly 

on the NSPCs to regulate the increase in the NSPCs during antidepressant 

treatment through either 5-HT1A and/or 5-HTR7 receptors.  

 

In this chapter, attempts will be made to examine whether the activation of the 5-

HT1A or the 5-HT7 receptor is important in the induction of NSPC proliferation. 

Investigation will be done on the expression of 5-HT1A and 5-HT7 receptors on 

NSPCs and the effects of their activation on NSPC proliferation using specific 

agonists. Identification of which receptor induces NSPC proliferation may help us 

to understand the likely mechanism of by which the action of antidepressants 

leads to the increase in NSPC proliferation and recovery from depression.  

 



4.2. Materials and Methods 

 

4.2.1. Immunocytochemistry of NSPCs 

 

To determine the expression of 5-HT1A and 5-HT7 receptors in NSPCs, 

dissociated NSPCs were plated on poly-L-ornithine (Sigma-Aldrich) and 

fibronectin (Gibco) coated coverslips for 2 hr. The cells were then fixed by 

treatment with 4% paraformaldehyde for 20 min followed by permeabilization 

using PBS with 0.1% Triton X-100. Immunostaining was conducted using anti-5-

HT1A receptor antibody (Santa Cruz, CA, USA) and anti-5-HT7 receptor 

antibody (Santa Cruz) in 10% donkey serum in PBS overnight at room 

temperature. Fluorescence-conjugated Alexa Fluor secondary antibodies 

(Invitrogen) were used to visualize the primary antibodies and the coverslips 

were counterstained with DAPI.  

 

4.2.2. Cell proliferation assay of agonist-treated NSPCs 

 

To determine whether activation of the 5-HT1A and/or 5-HT7 receptors is able to 

influence NSPC cell proliferation rates, a cell proliferation assay was performed 

using CellTiter 96® AQueous One Solution Reagent (Promega, Madison, US). 

Third passage neurospheres were dissociated using the same procedure as for 

cell passaging. Resuspended single cells were counted using a haemocytometer 

(Neubauer, Germany) and plated at 1000 cells/well in 100µl volume on poly-L-
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ornithine (Sigma-Aldrich) and fibronectin (Gibco) coated 96-well flat transparent 

culture dish in neurosphere medium. The cells for each assay run were plated 

from the same batch of cells to maintain plating homogeneity. The cells were pre-

cultured for 3 days prior to addition of treatment solution in neurosphere medium 

for 3 days. CellTiter 96® AQueous One Solution reagent was added according to 

manufacturer’s instructions and incubated at 37ºC. After 1 hour incubation, the 

first reading was taken using a spectrophotometric plate reader (Infinite M200, 

Tecan) at 490nm with reference wavelength at 630nm. Subsequently second, 

third and fourth readings were taken every 1 hour incubation at 37ºC.  

 

The cells were treated with (±)-8-Hydroxy-2-dipropylaminotetralin hydrobromide 

(8-OH-DPAT; 0.1μM, 1μM, 2.5μM, 5μM; Tocris, Missouri, USA); (RS)-trans-8-

Hydroxy-2-[N-n-propyl-N-(3'-iodo-2'-propenyl)amino]tetralin oxalate (8-OH-

PIPAT; 0.1μM, 1μM, 2.5μM, 5μM; Tocris), (2S)-(+)-5-(1,3,5-Trimethylpyrazol-4-

yl)-2-(dimethylami no)tetralin (AS-19; 0.1μM, 1μM, 2.5μM, 5μM; Tocris); 1-(2,3-

Dihydro-1,4-benzodioxin-5-yl)-4-(2,3-dihydro-1H-inden-2-yl)-piperazine (S15535; 

1nM, 10nM, 100nM, 1μM, 10μM, 100μM; Sigma-Aldrich).  

 

4.2.3. Statistical Analysis 

 

Each drug treatment was repeated using 3 independent batches of cells obtained 

from different pregnant mice with triplicate samples each. Mean absorbance 

computed, which was linear to the cell number, was expressed as a ratio to the 
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control without treatment and the SEM is calculated from three independent 

biological repeats. The treated samples were compared with the control and 

analyzed using Student’s t-test with P<0.05 was considered as statistically 

significant. All data are reported as mean ± SEM. 

 

4.2.4. In vivo BrdU cell proliferation assay 

 

Adult male C57BL/6 mice aged 6 to 8 weeks were group-housed with free 

access to food and water (12 hr light/dark cycles). The mice were given 5-7 days 

of habitat acclimatization before application of the drug treatment regime. The 

mice were treated with 8-OH-DPAT (4hr at 1mg/kg; Tocris); fluoxetine (14 days 

at 5mg/kg/day; Tocris) and 8-OH-PIPAT (3 days and 14 days at 1mg/kg/day; 

Tocris). Saline (vehicle control) or treatment drugs were intraperitoneally 

administered for the duration stipulated in the results section. After the treatment 

period, the animals were injected with 300mg/kg of 5-Bromo-2-deoxyuridine 

(BrdU; Sigma-Aldrich) 2 hours prior to sacrificing by anaesthetic overdose and 

transcardinal perfusion with 4% paraformaldehyde. The extracted brains were 

post-fixed overnight in ice cold 4% paraformaldehyde before paraffin embedding 

and microtome sectioning. Six µm brain slices were collected from the 

hippocampus and attached to 1.5% gelatin coated slides. The sections were then 

first permeabilized and treated with 4M HCl and  trypsin (1 mg/ml in PBS, 10 min, 

37˚C) before blocking and detection using anti-BrdU antibody (1:100; 

Neomarkers, Fremont, CA). Secondary detection was done according to 
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manufacturer’s instruction using Vectastatin® Elite ABC kit (Vector Laboratories). 

One section was counted for every 30µm for the whole hippocampus and the 

total number of BrdU positive cells was expressed as a ratio against the total 

perimeter of the dentate gyrus of the hippocampal sections. The mean of three 

mice treated with drugs was compared with the mean of three mice treated with 

the saline using Student’s t-test with P<0.05 considered as significant. All data 

are reported as mean ± SEM. 

 



4.3. Results 

 

4.3.1. 5-HT1A and 5-HT7 receptors were expressed on NSPCs 

 

In Section 3.3.3, the 5-HT1A and 5-HT7 receptors were found to be expressed 

on the NSPCs at the RNA level. To further confirm the presence of the 5-HT1A 

and 5-HT7 receptors at the protein level, we conducted immunocytochemistry on 

NSPCs using double immunostaining. Double immunocytochemistry also verified 

that both 5-HT1A and 5-HT7 receptors can be found on the same NSPCs (Fig. 

4.1). 

 

4.3.2. Acute administration of the 5-HT1A/5-HT7 receptor agonist, 8-OH-

DPAT, but not the selective 5-HT1A receptor agonist, 8-OH-PIPAT, 

increased cell proliferation in vitro and in vivo 

 

To determine whether the activation of 5-HT1A receptor is the main effect that 

drives the increase in NSPC proliferation, we study the effects of 8-OH-DPAT 

and 8-OH-PIPAT on NSPC proliferation. Cell proliferation assay was conducted 

on cultured hippocampal and SVZ NSPCs treated with either 8-OH-DPAT or 8-

OH-PIPAT. Results showed that 8-OH-DPAT was able to bring about a 

significant increase in NSPC proliferation upon a 3 day acute treatment for SGZ 

NSPC, but this was not the case for 8-OH-PIPAT (Fig. 4.2).  
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Figure 4.1. Expression of 5-HT1A and 5-HT7 receptors on NSPCs. Double
immunocytochemistry of 5-HT1A and 5-HT7 receptors was conduced using anti-5-
HT1A and anti-5-HT7 receptor antibodies to detect the presence of the receptors
on the same NSPC. The scale bar indicates 10µm.
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Figure 4.2. Treatment of cultured NSPCs with (A) 8-OH-DPAT and (B) 8-OH-PIPAT.
Cultured NSPCs from the hippocampus (Hippo) and subventricular zone (SVZ) were
treated with the 5-HT1A/7 receptor agonist, 8-OH-DPAT, and the specific 5-HT1A
receptor agonist, 8-OH-PIPAT, before being subjected to CellTitre 96 AQueous cell
proliferation assay. The relative proliferation rates were expressed as a ratio against the
control.
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To further ascertain that this effect was replicable in vivo, we treated the mice 

with acute treatment of either 8-OH-DPAT or 8-OH-PIPAT. Our results show that 

acute administration (6 hr) of 8-OH-DPAT is able to increase cell proliferation in 

NSPCs of mice (Fig. 4.3). However, 8-OH-PIPAT, a specific agonist to the 5-

HT1A receptor, failed to increase cell proliferation in the acute treatment (3 days; 

Fig. 4.4). However, 8-OH-PIPAT is able to increase cell proliferation to similar 

levels as fluoxetine on chronic 14 day treatment in mice (Fig 4.4).  

 

4.3.3. The 5-HT7 receptor specific agonist, AS-19, can increase NSPC 

proliferation in vitro 

 

The failure of selective 5-HT1A receptor agonist 8-OH-PIPAT to increase NSPC 

proliferation upon acute treatment, suggests that 8-OH-DPAT may have acted at 

the 5-HT7 receptor in the study by Banasr et al. (2004). This suggests the 

likelihood that the activation of the 5-HT7 receptor will increase NSPC 

proliferation, therefore a 5-HT7 receptor agonist, AS-19, was tested on the 

cultured NSPCs. The treatment of cultured NSPCs with AS-19 shows a 

significant increase in NSPC proliferation on acute treatment for 3 days (Fig. 4.5).  
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Figure 4.3. Treatment of mice with a mixed 5-HT1A and 5-HT7 receptor agonist. (a)
Mice were injected with vehicle or 8-OH-DPAT (n=3 for each treatment). After 4 hours, the
mice were injected with BrdU and perfused another 2 hours later. The brains were
embedded in paraffin and sectioned at 6µm throughout the entire hippocampus on a
microtome. Every 5th section was selected for immunostaining with anti-BrdU antibody. (b)
The total number of BrdU immunoreactive cells was expressed relative to the length of the
perimeter of the subgranular zone. The scale bar represents 100μm. (*P<0.05)
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Figure 4.4. Chronic but not acute treatment with a 5-HT1A receptor agonist can
increase NSPC proliferation in the dentate gyrus. Four mice for each group were
injected with vehicle, fluoxetine or 8-OH-PIPAT for a duration of either 3 days or 14 days,
after which the mice were injected with BrdU and perfused another 2 hours later. BrdU
was detected by immunohistochemistry and the total number of BrdU immunoreactive
cells was expressed relative to the length of the perimeter of the subgranular zone. This
work is done by Ou L and Dawe GS (Tan et. al., 2007, Poster at Neuroscience 2007).
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Figure 4.5. Treatment of cultured NSPCs with the selective 5-HT7 receptor
agonist, AS-19. Cultured NSPCs from the hippocampus (Hippo) and subventricular
zone (SVZ) were treated with the 5-HT7 receptor agonist, AS-19, for 3 days before
being subjected to CellTitre 96 AQueous cell proliferation assay. The relative
proliferation rates were expressed as a ratio against the control.
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4.3.4. The 5-HT1A autoreceptor may also be a target for induction of NSPC 

proliferation 

 

To determine whether the activation of the 5-HT1A autoreceptor could mediate 

an increase in NSPC proliferation, cultured NSPCs were treated with S15535. 

Results of our studies showed that activation of the 5-HT1A autoreceptor using 

S15535, which is a 5-HT1A autoreceptor specific agonist and a post-synaptic 5-

HT1A receptor antagonist, was able to bring about an increase in cell 

proliferation, however the increasing trend is not statistically significant (P>0.1; 

Fig. 4.6). 
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Figure 4.6. Treatment of cultured NSPCs with the 5-HT1A autoreceptor
agonist/postsynaptic antagonist, S15535. Cultured NSPCs from the hippocampus
(Hippo) and subventricular zone (SVZ) were treated with the 5-HT1A autoreceptor
agonist/postsynaptic antagonist, S15535, for 3 days before being subjected to
CellTitre 96 AQueous cell proliferation assay. The relative proliferation rates were
expressed as a ratio against the control.

0

0.5

1

1.5

2

2.5

0nM 1nM 10nM 100nM 1μM 10μM 100μM

S15535 Concentration

Re
la

tiv
e 

Pr
ol

fe
ra

tio
n

Hippo NSPC

SVZ NSPC

122

(n=3)



4.4. Discussion 

 

NSPCs may be able to receive serotonin signals from the serotonin receptors 

they expressed, as was suggested in this chapter by investigation of the 5-HT1A 

and 5-HT7 receptors. Previous papers have suggested that 5-HT1A receptor 

activation by 8-OH-DPAT can bring about an increase in NSPC proliferation in 

vivo (Banasr et al., 2004). However, 8-OH-DPAT also has moderate activity at 

the 5-HT7 receptor (Wood et al., 2000). Our results shown that the specific 5-

HT1A receptor agonist, 8-OH-PIPAT, was unable to increase the NSPC 

proliferation on acute treatment both in vitro and in vivo. Only upon 14 days of 

chronic treatment was 8-OH-PIPAT is able to produce an increase in NSPC 

proliferation to a similar level as chronic treatment with the antidepressant, 

fluoxetine. We also showed that by directly activating the 5-HT7 receptor using a 

specific agonist, AS-19, with 3-day acute treatment, we were able to increase 

NSPC proliferation in vitro. As the 5-HT1A receptor may also be an autoreceptor, 

the NSPC was treated with S15535 which activates 5-HT1A autoreceptor at the 

same time blocked the 5-HT1A postsynaptic receptor. An increasing trend in 

NSPC proliferation was observed, but further test needs to be conducted as the 

increase is not statistically significant.  

 

As the 5-HT1A receptor was one of the first serotonin receptors studied for its 

activation of NSC proliferation in vivo. Banasr et al. (2004) suggested that NSPC 

proliferation can be increase with the acute 5-HT1A receptor activation by 8-OH-
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DPAT.  In our experiments, it was observed that the NSPC expressed 5-HT1A 

receptors. However, in our experiments we failed to increase NSPC proliferation 

when we acutely treated the cultured NSPCs or the mice with 8-OH-PIPAT. 

However, upon repeating the experiments with 8-OH-DPAT, the treatment was 

able to increase the NSPC proliferation. As 8-OH-DPAT is a partial agonist at the 

5-HT7 receptor, therefore we suspect that the mode of action of 8-OH-DPAT in 

modulating NSPC proliferation may be through the 5-HT7 receptor. The 

presence of 5-HT7 receptors expressed on NSPCs further supports the feasibility 

of this view.  

 

Examining the functional difference between the 5-HT1A and 5-HT7 receptors 

suggest that both the receptors mediate very different responses in cellular 

signaling. The 5-HT1A receptor is suggested to be coupled negatively to 

adenylate cyclase through Gαi/αo protein whereas the 5-HT7 receptor activation 

stimulates adenylate cyclase through the Gαs protein (Albert et al., 1996; Bard et 

al., 1993). It has been reported that stimulation of adenylate cyclase increases 

cAMP levels and cAMP has been implicated in increasing cell proliferation 

through the activation of ERK. This cAMP mediated cell proliferation has so far 

always been mediated by GPCRs coupled with Gαs and not others, further 

suggesting that activation of 5-HT7 receptor is mediating the increase in NSC 

proliferation (Stork and Schmitt, 2002). Indeed, the 5-HT7 receptor activation has 

been shown to increase adenylate cyclase activity through the cAMP-GEF 

pathway to activate ERK (Lin et al., 2003).  
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Furthermore, activation of the 5-HT1A receptors has been suggested to inhibit 

the release of 5-HT. This is likely to be via the effects of activation of the 5-HT1A 

autoreceptors (Sharp and Hjorth, 1990). However, our experiments suggest that 

the 5-HTR1A autoreceptor agonist, S15535, may be capable in increasing the 

NSPC proliferation, however not statistically significant. This could be due to the 

mixed effect of acting partially as a 5-HT1A postsynaptic antagonist at the same 

time the activation of the autoreceptors. Further test could be conducted on the 

blockade of the 5-HT1A postsynaptic receptors to delineate the effects caused by 

S15535. Moreover, the presence of the 5-HT1A autoreceptor may also suggest 

the possibility that NSPCs are capable of synthesizing and releasing 5-HT.  

 

One of the possible mechanisms of agonist-induced NSPC proliferation is that 

the activation of the receptor may cause the release of growth factors from other 

neuronal cell types. It has been noted that activation of 5-HT1A receptor cause 

astrocytes to release S-100, which is a growth factor (Whitaker-Azmitia et al., 

1990). Although, the S-100 protein has not been implicated in NSPC 

proliferation, it has been implicated in the proliferation of Schwann cells (Xu et 

al., 2009). As such, we cannot discount the fact that the other surrounding cell 

types may release other growth factors which promote the NSPC proliferation. 

However, most of the experiments are done on cultured NSPCs which allow the 

elimination of the effects from non-NSPC cell types, thereby confirming the fact 
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that the increase in proliferation is induced purely by the activation of the 

receptors expressed on the NSPCs.  

 

In conclusion, our in vitro and in vivo data suggest that the activation of the 5-

HT7 receptor, but not the activation of the postsynaptic 5HT1A receptor that was 

previously suggested, can bring about the increase in the NSPC proliferation. 

 



5. 5-HT3 RECEPTOR – PROSPECTS OF 5-HT ACTIVATED CURRENTS 

AFFECTING NSPC PROLIFERATION 

 

5.1 Introduction 

 

The 5-HT3 receptor is the only subtype of 5-HT receptor that is an ion channel 

and not a G-protein coupled receptor as the case for all the other subtypes of 5-

HT receptor. Being a ligand gated ion channel permeable to sodium and calcium 

ions, upon activation by 5-HT, it could be capable of depolarizing the membrane, 

which would bring about action potentials within the NSPCs and may also bring 

about other cellular and physiological changes. The 5-HT3 receptors in the CNS 

are implicated in functions such as emesis, cognition and anxiety. 5-HT receptor 

immunoreactivity is also very abundant postsynaptically in the hippocampus 

(Miquel et al., 2002).  

 

As shown in the results presented in Chapter 3, both 5-HT3A and 5-HT3B 

receptors are found to be expressed in the NSPCs. Together with their 

implication in anxiety and depression, this expression profile makes the 5-HT3 

receptors a suitable target for the study of activation of NSPC proliferation. 

Several antidepressants have been known to act as antagonists at the 5-HT3 

receptor and to block its Na+ and Ca+ currents (Eisensamer et al., 2003). Several 

of these antidepressants are also capable of inducing an increase in NSPC 
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proliferation (Santarelli et al., 2003); suggesting the possibility that 5-HT3 

receptors can be a target of modulation of NSPC proliferation. 

 

In this study, the role of the 5-HT3 receptor in the NSPC proliferation will be 

examined. The expression and function of 5-HT3 receptors in NSPCs will be 

investigated first.  As antidepressants that act as 5-HT3 receptor antagonists are 

at the same time able to activate the NSPC proliferation, the possibility of 5-HT3 

blockade inducing the increase in NSPC proliferation will also be examined.  



5.2. Materials and Methods 
 

5.2.1. Immunocytochemistry of NSPCs 

 

To determine the expression of 5-HT3 receptor in NSPCs, dissociated NSPCs 

were plated on poly-L-ornithine (PLO) and fibronectin (FN) coated coverslips and 

grown overnight. The cells were then fixed by treatment with 4 % 

paraformaldehyde for 20 minutes followed by permeabilization using PBS with 

0.1% Triton X-100. Immunostaining was conducted using anti-5-HT3 receptor 

antibody (Santa Cruz, CA, USA) and anti-Sox2 antibody (1:1000; Chemicon, CA, 

USA) in 10% donkey serum in PBS overnight at room temperature. 

Fluorescence-conjugated Alexa Fluor secondary antibodies (Invitrogen) were 

used to visualize the primary antibodies and the coverslips were counterstained 

with DAPI. The differentiated cells were then imaged by sequential scanning with 

a confocal microscope (LSM 510, Carl Zeiss Microimaging GmbH).  

 

5.2.2. Electrophysiological recordings of 5-HT3 activated currents in 

NSPCs 

 

The 5-HT3 receptor activated currents were recorded in the whole cell 

configuration from cultured NSPCs plated on PLO and FN coated coverslips and 

grown for at least 3 days to allow recovery from trypsinization and cell growth. 

Whole-cell voltage clamp configuration was conducted with the membrane 

potential clamped at -10mV as the resting potential of the NSPCs in current 

 129



mode was -7.57±1.21 mV (n=79). The currents were recorded with borosilicate 

pipettes with resistances of 2–6 MΩ which were pulled from borosilicate glass 

capillaries (Boralex) with a Flaming Brown micropipette puller (P-81 Sutter 

Instrument Co., CA, USA).  The pipettes were filled with an internal solution 

containing (in mM):130 KCl, 1 MgCl2, 5 EGTA, 10 HEPES, 2 K-ATP with the 

solution adjusted to pH 7.2 and to 290 mOsm with sucrose. The standard 

external solution contained (in mM): 150 NaCl, 5 KCl, 1.1 MgCl2, 2.6 CaCl2, 10 

HEPES, 10 glucose, with the solution adjusted to pH 7.4 and to 310 mOsm. 

NPCs were clamped using a MultiClamp 700A amplifier (Molecular Devices 

Corp., Sunnyvale, CA, USA) in conjunction with a Digidata 1322A interface (Axon 

Instruments, Union City, CA, USA) at a holding potential of –10 mV. Currents 

were recorded and analyzed using pCLAMP 9.2 software (Molecular Devices 

Corp).  

 

5.2.3. Cell proliferation assay of 5-HT3 receptor agonist- and antagonist-

treated NSPCs 

 

To determine whether activation or blockade of the 5-HT3 receptors isable to 

influence the  cell proliferation rate, a cell proliferation assay was performed 

using CellTiter 96® AQueous One Solution Reagent (Promega). Third passage 

neurospheres were dissociated using the same procedure as for cell passaging 

(Chapter 2, Section 2.2.2). Resuspended single cells were counted using a 

haemocytometer (Neubauer, Germany) and plated in neurosphere medium at 
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1000 cells/well in a 100 µl volume on poly-L-ornithine (Sigma-Aldrich) and 

fibronectin (Gibco) coated 96-well flat transparent culture dishes. The cells for the 

assay were plated from the same batch of cells to maintain plating homogeneity. 

The cells were pre-cultured for 3 days prior to addition of treatment solutions in 

neurosphere medium for 3 days. CellTiter 96® AQueous One Solution reagent 

was added according to the manufacturer’s instructions and incubated at 37ºC. 

After 1 hour incubation, a first reading was taken using a spectrophotometric 

plate reader (Infinite M200, Tecan) at 490nm with the reference wavelength at 

630nm. Subsequently second, third and fourth readings were taken each hour 

under continued incubation at 37ºC.  

 

The cells were treated with the agonists 1-(3-Chlorophenyl)biguanide 

hydrochloride (m-CPBG; 0.05uM, 0.5uM, 5uM, 50uM) and  1-(6-Chloro-2-

pyridinyl)-4-piperidinamine hydrochloride (SR57227; 0.05uM, 0.5uM, 5uM, 50uM) 

and the antagonists N-(1-Azabicyclo[2.2.2]oct-3-yl)-6-chloro-4-methyl-3-oxo-3,4-

dihydro-2H-1,4-benzoxazine-8-carboxamide (Y-25130; 0.05uM, 0.5uM, 5uM, 

50uM) and Tropanyl 3,5-dichlorobenzoate (MDL72222; 0.05uM, 0.5uM, 5uM, 

50uM). The drugs were purchased from Tocris Biosciences (Tocris, Missouri, 

USA). The concentrations chosen were in the range reported in other literature: 

m-CPBG (Lee et al., 2005; Turner et al., 2004); SR57227 (Edwards et al., 1996); 

Y-25130 (Haga et al., 1993) and MDL72222 (Middlemiss et al., 1992). 
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5.2.4. Statistical Analysis 

 

Each drug treatment was repeated using three independent batches of cells 

obtained from different pregnant mice each with triplicate samples. Mean 

absorbances were computed and one-way ANOVA was performed to find any 

differences between the drug concentration within the biological repeats. If there 

were any significant differences, Dunnett’s statistics was computed to compare 

each concentration with the control. 

 

5.2.5. In vivo BrdU cell proliferation assay 

 

Adult male C57BL/6 mice of 6 to 8 weeks were group-housed with free access to 

food and water (12 hr light/dark cycles). The mice were given 5-7 days of habitat 

acclimatization before the drug application regime. Saline (vehicle control) or 

1mg/kg Y-25130 were intraperitoneally administered once daily for a period of 14 

days. After 14 days, the animals are injected with 300mg/kg BrdU (Sigma-

Aldrich) 2 hr prior to sacrifice. The mice were then transcardial perfused with 4% 

paraformaldehyde. The extracted brains were post fixed overnight in ice cold 4% 

paraformaldehyde before equilibration in 30% sucrose in PBS for cryoprotection 

prior to sectioning. Twenty µm brain slices were collected from the hippocampus 

and attached to 1.5% gelatin coated slides. The sections were then first 

permeabilized and treated with 4M HCl and  trypsin (1 mg/ml in PBS, 10 min, 

37˚C) before blocking and detection using anti-BrdU antibody (1:100; 
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Neomarkers, Fremont, CA). Secondary detection was done according to 

manufacturer’s instruction using Vectastatin® Elite ABC kit (Vector Laboratories). 

Three representative sections for each region were selected and the total 

number of BrdU-positive cells was expressed as a ratio against the total 

perimeter of the dentate gyrus of the hippocampal sections. The mean of three 

mice treated with Y-25130 was compared with the mean of three mice treated 

with the saline control using Student’s t-test at 95% significance. All data are 

reported as mean ± SEM. 



5.3. Results 

 

5.3.1. NSPCs expressed 5-HT3 receptors 

 

In Chapter 3, the results indicated that NSPCs expressed 5-HT3A and 5-HT3B 

receptors at the RNA level. The expression of 5-HT3 receptors at the protein 

level was further confirmed by immunocytochemistry using anti-5-HT3 receptor 

antibodies that were not specific to any of the 5-HTR3 subtypes. Results show 

that the 5-HT3 receptor was expressed in NSPCs which also co-expressed the 

NSPC marker, Sox2 (Fig. 5.1). 

 

5.3.2. Functional study of the 5-HT3 receptor using patch clamp analysis 

 

As the 5-HT3 receptor functions as a ligand-gated ion channel, to determine 

whether the 5-HT3 receptor expressed on the NSPCs were functional, patch 

clamp analysis was conducted to assess the receptor channel function in the 

NSPCs (with the help from Dr Li Shao and Ms Deng Hongmin) (Fig 5.2). The 

resting potential of stem cells examined in the current clamp mode was -

7.57±1.21 mV (n=79), therefore the holding potential of whole cell recording was 

set at -10mV. The majority of the examined cells (56.25%, 9/16) were sensitive to 

5-HT, which typically induced outward currents. 43.75% (7/16) of the cells were 

insensitive to 5-HT. The cells sensitive to 5-HT were also activated by SR57227, 

which is a 5-HT3 receptor specific agonist, and outwards currents were induced. 
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anti-5HTR3
anti-Sox2

Figure 5.1. Expression of 5-HT3 receptors in NSPCs. Immunocytochemistry for 5-
HT3 receptors was conducted using an anti-5HT3 receptor antibody which targets both
5-HT3A and 5-HT3B receptors. The cells were colabelled with anti-Sox2 antibody which
is a NSPC marker. The scale bar represents 10μm.
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Figure 5.2. 5-HT3 receptor currents recorded from the NSPCs upon activation
of the receptor by 5-HT or the agonist SR57227. Both 5-HT-activated currents
and SR57227-activated currents could be completely blocked by the specific 5-HT3
receptor antagonist Y25130.

136



The average of 5-HT (1mmol/L) -activated currents was 44.32±19.6pA. Both 5-

HT-activated currents and SR57227-activated currents could be completely 

blocked by Y25130 (200μmol/L), which is specific 5-HT3 receptor antagonist. 

 

5.3.3. 5-HT3 receptor agonists and antagonists on NSPC proliferation in 

vitro 

 

To identify whether the 5-HT3 receptor played a role in the neural progenitor 

proliferation, the cultured NSCs were treated with 5-HT3 receptor agonists (m-

CPBG and SR57227) and antagonists (Y-25130 and MDL 72222). Treatment 

with the agonist, m-CPBG, was able to significantly increase the cell proliferation 

rate at concentrations of 0.05µM and 5µM whereas another agonist, SR57227, 

failed to increase the cell proliferation rate (Fig. 5.3A and B). Treatment with the 

antagonists, Y-25130 and MDL72222, was able to significantly increase cell 

proliferation at 0.5µM and 0.05µM respectively (Fig. 5.3C and D). Higher 

concentrations caused the NSPCs to decrease cell proliferation suggesting that 

high concentration of SR57227, Y-25130 and MDL72222 might be toxic to the 

cells (Fig. 5.3B, C and D). 
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Figure 5.3. Cell proliferation assay of hippocampal NSPCs treated with 5-HT3
receptor agonists and antagonists. NSPCs were treated for 3 days with various
concentrations of 5-HT3 receptor agonist (A) mCPBG and (B) SR57227, and antagonist (C)
Y-25130 and (D) MDL72222 before being assayed for changes in cell proliferation using
CellTiter 96 Aqueous One cell proliferation assay. Results were normalised within the
assay groups and the relative proliferation of three biological repeats were plotted and
analysed. For data where ANOVA shows significant difference (95% confidence), Dunnett’s
tests against control were performed. The values are expressed as mean ± SEM. (*p<0.05,
**p<0.01)
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5.3.4. The 5-HT3 receptor antagonist, Y-25130, is able to induce an increase 

in NSPC proliferation in vivo 

 

Since treatment with 5-HT3 receptor antagonists was consistently able to 

increase NSPC proliferation in vitro, an assay to determine whether one of the 

antagonists Y-25130 was also able to increase cell proliferation in mice in vivo 

was performed. To assay whether the blockade of 5-HT3 receptor can also 

change the NSPC proliferation in vivo, mice were treated for 14 days with Y-

25130 and compared with the saline-treated control mice. The Y-25130 treated 

mice show a significant increase in the BrdU incorporation in the dividing NSPCs 

as compare to control, indicating an increase in the cell proliferation rate due to 

induction by the specific blockade of 5-HT3 receptors (Fig. 5.4).  
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Figure 5.4. BrdU cell proliferation assay in mice treated with the 5-HT3 receptor
antagonist Y-25130. Four mice for each group were intraperitoneally injected with
either saline or Y-25130 (1mg/kg) daily for a period of 14 days. After that, they were
subjected to BrdU cell proliferation assay. The number of BrdU immunopositive cells
were expressed relative to the length of perimeter of the dentate gyrus. Students t-test
analysis was conducted on the mean of the three biological replicates. The values are
expressed as mean ± SEM. (*p<0.05). The scale bar represents 200μm.
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5.4. Discussion 

 

The results presented show that NSPCs expressed 5-HT3 receptors. These 

channels are functional and are able to produce 5-HT-induced currents activated 

both by 5-HT and also by a specific 5-HT3 receptor agonist, SR57227. These 

currents can be blocked by the application of the 5-HT3 receptor specific 

antagonist, Y-25130. Application of the 5-HT3 receptor antagonists, Y-25130 and 

MDL72222, increased cell proliferation of cultured NSPCs, however application 

of the agonists, mCPBG and SR57227, gave variable results. One of the 5-HT3 

receptor antagonists tested, Y-25130, was also shown to be able to increase the 

NSPC proliferation rate after 14 day treatment of mice in vivo. 

 

Interest in the ability of 5-HT reuptake inhibitor to increase neurogenesis in 

NSPCs has lead to interest in the various 5-HT receptors expressed on the 

NSPCs. In this chapter, the expression of the 5-HT3 receptor in mouse NSPCs 

was examined. The mRNA expression studies discussed in Chapter 3 were 

limited to the 5-HT3A and 5-HT3B receptor subtypes as no other 5-HT3 receptor 

subtypes have been identified in rodents (Brady et al., 2007). However, in 

humans, there are reports of another three different subtypes of 5-HT3 receptor, 

namely 5-HT3C, 5-HT3D and 5-HT3E receptors (Niesler et al., 2003; Karnovsky 

et al., 2003). Our microarray analysis of human fetal NSPCs also shows that 

besides 5-HT3A and 5-HT3B receptors, human fetal NSCs also expressed the 5-

HT3D receptor subtype (unpublished data). 5-HT3A receptors are able to form 
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pentaheteromeric ion channel pores with either the 5-HT3B or 5-HT3D receptor 

subunit. The 5-HT3A receptor’s ability to form homomeric and heteromeric 

complexes enables change in the mechanisms underlying desensitization, 

sensitivity to endogenous agonist and time required for resensitization 

(Hapfelmeier et al., 2003).  

 

The 5-HT3 receptor is the only ion channel in the 5-HT receptor family. The 

expressed 5-HT3 receptors on the NSPCs are functional channels. Being ligand-

gated ion channels, they are able to be activated by 5-HT and specific agonists 

to allow transmembrane currents. In our investigation, we found that the currents 

were only detected in 56.25% (9/16) of cells patched. This suggests that the 

expression of the 5-HT3 receptors on the NSPCs may be dynamic. A complete 

blockade of 5-HT currents was also observed when the 5-HT3 antagonist, Y-

25130, was applied suggesting that some NSPCs might only functionally express 

5-HT3 receptors. As NSPCs in culture are asynchronized and each cell may be 

at a different cell cycling stage at any moment, this suggests that the expression 

or function of 5-HT3 receptors may change at different stages of the cell cycle or 

between the actively dividing stage and the quiescent stage. This hypothesis can 

be further tested by collecting the patched single NSPCs for both with and 

without currents; and conducting single cell RT-PCR to find out the specific cell 

cycle stages of the collected NSPCs by profiling the marker genes expressed at 

a specific cell cycle stage.  
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The proliferation of the NSPCs has been implicated in treatment of depression as 

the proliferation of the NSPCs is important for the behavioural effects of 

antidepressants in rodents (Santarelli et al., 2003). Since the 5HT3 receptor is 

expressed on NSPCs, proliferation may be affected by the specific activation and 

blockade of these receptors on NSPCs. Reports have suggested that the effects 

of the antidepressants may be attenuated by co-administration of the 5-HT3 

receptor agonist, mCPBG, in an animal model of depression (Nakagawa et al., 

1998). However, mCPBG alone is not able to affect the duration of immobility in 

the force swim test, which is a behavioral model sensitive to antidepressant 

activity in rodents. However, the addition of a selective 5-HT3 receptor antagonist 

ICS205-903 is able to significantly decrease the duration of immobility in force 

swim test and this effect can be attenuated by the administration of mCPBG 

(Nakagawa et al., 1998). Incidentally, in our experiments, the 5-HT3 receptor 

antagonists showed consistent induction of an increase in the rate of proliferation 

of the NSPCs. Further reports by Eisensamer et al. (2003) also showed that the 

antidepressants, desipramine, imipramine, trimipramine, fluoxetine, reboxetine 

and mirtazapine, are able to act as antagonists at the 5-HT3A receptor to 

effectively block 5-HT-induced Na+ and Ca2+ -currents in a dose dependent 

manner. Treatments with antidepressants fluoxetine and imipramine have been 

shown to also increase the cell proliferation of NSPCs in mice models, further 

suggesting that the inhibition of the 5-HT-induced currents leading to an increase 

in NSPC proliferation may be one of the mechanisms of the antidepressant effect 

(Santarelli et al., 2003). As such, this suggests that selective 5-HT3 receptor 
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antagonists may be able to act as antidepressants as our experiment shows that 

Y-25130 can also increase in NSPC proliferation in mice and NSPC proliferation 

is essential to the behavioral effects of antidepressants (Santarelli et al., 2003). 

 

Treatment with 5-HT3 receptor agonists, mCPBG and SR57227, produced some 

puzzling results. Treatment with SR57227 had no significant effect on the cell 

proliferation of the NSPCs. However, treatment of the cultured NSPCs with 

mCPBG, although also an agonist, brought about a more varied effect with an 

increase in NSPC proliferation at 0.05µM and 5µM mCPBG treatment. This 

suggests that there may be a difference in the mode of action of mCPBG at 

different concentrations. Hapfelmeier et al. (2003) have shown that the mCPBG 

can induced a concomitant open-channel block at both homomeric 5-HT3A 

receptors and heteromeric 5-HT3A/B receptors which resulted in a bell shaped 

dose-response curve for current amplitude. The increase in NSPC proliferation 

by treatment with mCPBG in our experiments may be an effect of open channel 

blockade produced by the prolong treatment with mCPBG (3 days). The receptor 

resensitization for mCPBG induced currents is slower than resensitization by 5-

HT. Also, mCPBG is able to evoke a tail current in cells expressing the 5-HT3A/B 

heteromeric form of the receptor, which is not present in the 5-HT-induced 

current. These effects induced by mCPBG treatments may have caused the 

induction of proliferation and resulted in the different response to that produced 

by the other agonist, SR57227. 
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Our results have shown that NSPCs express functional 5-HT3 receptors and 

their blockade can increase NSPC proliferation both in vitro and in vivo. These 

data point towards the use of selective antagonists at the 5-HT3 receptor as 

possible antidepressants. However, in this study we have yet to conduct 

behavioral testing to further ascertain whether the use of 5-HT3 receptor 

antagonists can bring about a reduction in the behavioral effects of depression. 

Therefore, more test will have to be performed to determine the whether the 5-

HT3 receptors antagonists can be used as an effective antidepressant in the 

future.  

 



6. PROSPECTS OF SELF REGULATION OF PROLIFERATION THROUGH 

5-HT – TRYPTOPHAN HYDROXYLASE EXPRESSION IN NSPCS 

 

6.1 Introduction 

 

In Chapter 3, the results indicated that the exogenous addition of 5-HT can bring 

about an increase in the NSPC proliferation. This experiment simulates the 

presence of serotonergic neurons releasing 5-HT to the NSPCs, activating the 5-

HT receptors, which bring about an increase in NSPC proliferation. 5-HT, 

besides being a neurotransmitter, is also involved in other roles such as 

morphogenesis during early embryonic development and both in fetal and adult 

neurogenesis (Di Pino et al., 2004; Gaspar et al., 2003; Lauder, 1993; Whitaker-

Azmitia and Azmitia, 1994). One report suggests that embryonic stem cells 

express tryptophan hydroxylase (TPH), which are the rate limiting enzymes 5-HT 

synthesis (Walther and Bader, 1999). Considering that NSPCs can be 

considered as immature cells, there is a possibility that NSPCs may be capable 

of synthesizing 5-HT. 

 

Results from the previous chapters also suggest that the NSPCs express 5-HT 

receptors and these receptors function to regulate neurogenesis. These 5-HT 

receptors have also been implicated in the regulation of the neurotransmission, 

morphogenesis and pathological disease such as depression due to 5-HT 

dysregulation (Murphy et al., 1998; Bonnin et al., 2006). The “serotonin 
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hypothesis” suggested that imbalance of 5-HT levels leads to the onset of 

depression and that restoration of the balance, together with the resulting 

increase in neurogenesis, is able to help recovery from the depressive state 

(Santarelli et al., 2003). 

 

Therefore, it seems that one of the regulatory mechanisms that control NSPC 

proliferation would likely to be 5-HT levels, which would determine whether the 

5HT receptors on the NSPCs are triggered. Since TPH is the rate limiting 

enzyme in the 5-HT biosynthesis pathway, it would be natural to examine the 

presence of the TPH in the NSPC to provide evidence of the possibility of 

biosynthesis and self-regulation from 5-HT release.  

 

The recent discovery of neuronal TPH2 raises the question of whether both the 

isoforms of TPH are expressed in NSPCs, as they are in embryonic stem cells. 

Although TPH1 and TPH2 share sequence homology, their expression pattern 

and regulation differs, this suggests a possibility of different functions (Nakamura 

and Hasegawa, 2007).  TPH1 is expressed mainly in the periphery and the pineal 

gland. On the other hand, TPH2 is exclusively expressed in the neuronal cell 

types, more specifically at the median and dorsal raphe nuclei (Walter et al., 

2003; Malek et al., 2005; Sakowski et al., 2006, Nakamuara et al., 2006). 

Besides being differentially expressed, the biochemical properties of TPH1 and 

TPH2 are also different. TPH2 is more soluble and has a higher molecular weight 

as compared to TPH1 (Invernizzi, 2007) and TPH1 has a 4-fold higher enzymatic 
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activity and higher substrate affinity compared with TPH2 (Nakamura et al., 

2006). There is also evidence that polymorphism in the TPH1 gene may be 

associated with suicidal behaviour and antidepressant response in patients with 

unipolar major depression (Mann et al., 1997; Nielsen et al., 1998; Rujescu et al., 

2003; Bellivier et al., 2004; Peters et al., 2004). 

 

Therefore, in this chapter, the expression of TPH1 and TPH2 in the NSPCs were 

explored. Attempts will be made to examine how their expression in NSPCs 

relates to their likely implications for NSPC proliferation and neurogenesis. 

 



6.2. Materials and Methods 

 

6.2.1. RNA Extraction and Reverse Transcription PCR (RT-PCR) 

 

Total RNA was extracted, treated with DNaseI (DNase I recombinant, RNase-

free; Roche Diagnostic GmbH) and purified from each of the NSPCs which have 

been isolated from fetal hippocampus and SVZ according to the manufacturer’s 

instructions for PureLinkTM Micro-to-Midi Total RNA Purification System 

(Invitrogen). Quantitation of RNA was performed with Quant-iTTM RNA Assay Kit 

(Invitrogen). Approximately 1 µg of total RNA was reverse transcribed with 

oligo(dT) primers using the ImProm-IITM Reverse Transcription System 

(Promega, WI, USA). 

 

The reverse transcribed cDNA was used as a template for PCR using AmpliTaq 

Gold DNA polymerase (Applied Biosystems) according to manufacturer’s 

instructions. PCR primers were designed to be intron spanning to eliminate the 

presence of false positive from genomic DNA contamination. The primer 

sequences for TPH1 are (forward: 5’-TCCCAAGATTGCCTGTAAAC-3’, reverse: 

5’-TAGCCCTGGCTCAGACTGA-3’) and TPH2 are (forward: 5’-

CAAAGACGACCTGCTTGC-3’, reverse: 5’-TGACTGCATTGTTGCTACACC-3’). 

The PCR reactions were conducted at 94oC for 30 seconds, annealing 

temperature 55oC for one minute and 72oC for one minute for 35 cycles. The 
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PCR products were separated in 1.5% agarose gel, stained with ethidium 

bromide, and then visualized under UV irradiation.  

 

6.2.2. Western blotting 

 

Total protein was extracted from the NSPCs using protein extraction buffer 

containing 50mM Tris-HCl pH 7.4, 150mM NaCl, 20mM Na-EDTA, 1% Igepal 

CA-630, 10% glycerol. The protein concentration was determined using BCA Dye 

(Pierce Biotechnology, Rockford, IL). Twenty µg of protein was separated by 

12% SDS-PAGE. The protein was then electro-transferred to a nitrocellulose 

membrane (Bio-Rad, Hercules, CA, USA). The efficiency of the protein transfer 

was verified by staining with MemCode Reversible Protein Stain Kit (Pierce 

Biotechnology). The membranes were subsequently blocked with 5% non-fat 

skimmed milk in TBS-T with shaking at 4oC overnight. Anti-TPH1 or anti-TPH2 

antibodies (1:1000, Chemicon, CA, USA) and anti-β-actin antibody (Sigma-

Aldrich) in 1% non-fat skimmed milk in TBS-T were incubated with the membrane 

with shaking overnight at 4oC. The membranes were then washed six times in 

TBS-T for 5 minutes each time. The membranes were incubated with 

ImmunoPure Goat Anti-Rabbit IgG, Peroxidase Conjugated (1:50,000; Pierce 

Biotechnology) in 1% non-fat skimmed milk in TBS-T for one hour at room 

temperature. The membranes were then washed six times in TBS-T for 5 min 

each time. Detection of the protein bands were done by incubating the 
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peroxidase substrate SuperSignal West Femto (Pierce Biotechnology) with 

membrane for 5 min and exposing the X-ray film to the membrane.  

 

6.2.3. Immunocytochemistry of undifferentiated and differentiated NSPCs 

 

To determine the expression of TPH1 and TPH2 in undifferentiated NSPCs and 

upon multipotent differentiation of NSPCs, dissociated NSPCs were plated on 

poly-L-ornithine and fibronectin coated coverslips. Differentiation was induced 

with 0.5% fetal calf serum (Hyclone Laboratories Inc.) in neurosphere medium 

without EGF and bFGF. The cells were allowed to differentiate for a further 14 

days with samples collected on the start of differentiation, day 1, 3, 5, 7 and 14 

after the addition of differentiation medium. The cells were then fixed by 

treatment with 4 % paraformaldehyde for 20 minutes, followed by 

permeabilization using PBS with 0.1% Triton X-100. Immunostaining was 

conducted sequentially using anti-TPH1 or TPH2 (1:500; gift from Dr. Donald M. 

Kuhn; Sakowski et al., 2006) with anti-vimentin antibody (1:200; Chemicon) or 

anti-PSA-NCAM antibody (1:400; Chemicon) in 3% BSA in PBS overnight at 

room temperature. Fluorescence-conjugated Alexa Fluor secondary antibodies 

(Invitrogen) were used to visualize the primary antibodies and the coverslips 

were counterstained with DAPI. The differentiated cells were then imaged by 

sequential scanning with a confocal microscope (LSM 510, Carl Zeiss 

Microimaging GmbH).  
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6.2.4. Cell proliferation assay of PCPA treated NSPCs 

 

To determine whether exogenous addition of PCPA to cultured NSCs was able to 

influence the cell proliferation rate, a cell proliferation assay was performed using 

CyQuant NF Cell Proliferation Assay (Invitrogen). Third passage neurospheres 

were dissociated using the same procedure as for cell passaging. Resuspended 

single cells were sieved with 40 μm cell strainers and counted using a 

haemocytometer (Neubauer). NPCs were then plated at 1000 cells/well on poly-

L-ornithine (Sigma-Aldrich) and fibronectin (Gibco) coated 96-well black-walled 

flat transparent bottom culture dish in neurosphere medium. The cells for the 

assay were plated from the same batch of cells to maintain plating homogeneity. 

The cells were pre-cultured for 72 hours prior to addition of treatment solution. 72 

hours after the 5-HT or PCPA addition, CyQuant NF Cell Proliferation Assay 

reagents were added according to manufacturer’s instructions and incubated at 

37ºC. After 1 hour incubation, first reading was taken using a fluorescence plate 

reader (Infinite M200, Tecan, Zürich, Switzerland) at excitation wavelength of 

490nm and emission of 530nm. Each treatment was done with three independent 

biological repeats and each biological repeat was conducted with three technical 

repeat. 
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6.2.5. Statistical Analysis 

 

After subtracting the background, the fluorescence intensity, which was linear to 

the cell number, was expressed as a ratio to the control without treatment and 

the SEM is calculated from three independent biological repeats. The PCPA-

treated samples were compared with the control and analysed using Student’s t-

test. P<0.05 was considered as statistically significant. All data are reported as 

mean ± SEM. 

 

6.2.6. Analysis of cell proliferation in TPH1 KO mice 

 

A single high dose of BrdU (Sigma-Aldrich) dissolved in saline was 

intraperitoneally injected into the mice at a concentration of 300 mg/kg. Two 

hours after the BrdU injection, the mice were anaesthetized with an overdose of 

pentobarbital (Nembutal) and then transcardially perfused with 4% 

paraformaldehyde in 0.1 M of phosphate buffer (pH 7.4), after which the brains 

were extracted. The hippocampi of the mice were then cryosectioned using a 

cryostat (Leica Microsystems) at a thickness of 20 μm and mounted onto poly-L-

lysine coated slides prior to immunohistochemistry.  The sections were then first 

permeabilized and treated with 4M HCl and  trypsin (1 mg/ml in PBS, 10 min, 

37˚C) before blocking and detection using anti-BrdU antibody (1:100; 

Neomarkers, Fremont, CA). Fluorescence-conjugated Alexa Fluor secondary 

antibodies (Invitrogen) were used to visualize the primary antibodies and the 
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slides were mounted on Prolong Anti-fade mounting medium with DAPI 

(Invitrogen). The sections of the hippocampus were sampled at 20μm per every 

100μm for the whole hippocampus. The total number of BrdU positive cells was 

expressed as a ratio against the total length of the perimeter of the dentate gyrus 

of the hippocampal sections. The mean of four TPH1 KO mice (gift from Prof. Dr. 

Micheal Bader; Walther et al., 2003) were compared with the mean of four wild-

type and analyzed using Student’s t-test. P<0.05 was considered as statistically 

significant. All data are reported as mean ± SEM. 

 



6.3. Results 

 

6.3.1. NSPCs expressed both TPH1 and TPH2 

 

To determine whether the NSPCs were also capable of producing 5-HT, RT-PCR 

was conducted on total RNA isolated from NSPCs. Results showed that the 

NSPCs expressed both TPH1 and TPH2, which are the essential rate-limiting 

enzymes in the 5-HT biosynthesis pathway (Fig. 6.1A). Western blot analysis 

shows that the protein expression of TPH1 was higher in the NSPCs extracted 

from the hippocampus as compared to SVZ (Fig. 6.1B and C), whereas TPH2 

levels were comparable for both cell types (Fig. 6.1B and C). The expression was 

further confirmed by immunocytochemistry using anti-TPH antibodies specific to 

TPH1 and TPH2 isoforms (Fig. 2D). The expression suggested that the NSPCs 

produced 5-HT and might therefore be capable to self-regulating proliferation 

using 5-HT as a signal.  

 

6.3.2. Inhibition of 5-HT production reduced NSPC proliferation 

 

To show that 5-HT production was important for NSPC proliferation and that 

proliferation might be self-regulated by the NSPCs, p-chlorophenylalanine 

(PCPA) was used to inhibit TPH activity and 5-HT production in the cultured 

NSPCs. Treatment with PCPA at 2.5mM was observed to reduce the number of 

NSPCs (Fig. 6.2A) and measurements by cell proliferation assay showed that
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H             S  

Figure 6.1. Expression of TPH1 and TPH2 in NSPCs. (A) RT-PCR of total RNA
isolated from NSPCs and amplified using TPH1 and TPH2 specific primers. Western
blotting showed the protein expression of TPH1 and TPH2 in NSPCs isolated from
(B) hippocampus and (C) subventricular zone. (D) anti-TPH1 and anti-TPH2
immunostaining of hippocampal NSPCs plated as a monolayer. The scale bar in
each micrograph represents 10μm.

(B) TPH1 TPH2 
β-actin β-actin 

β-actin β-actin
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(A) (B)

Figure 6.2. 5-HT depletion decreases NSPC proliferation in culture. NSPCs were
plated at a density of 1000 cells per well in a 96 well dish and treated with different
concentrations of PCPA for 3 days to observe the changes in the rate of proliferation.
(A) Microscopy showing the density of cells after 3 days of treatment. (B) CyQuant cell
proliferation assay was conducted and the relative proliferation in NSPCs isolated from
hippocampus (Hippo) and subventricular zone (SVZ) with different treatments were
plotted against the control.

0mM PCPA

2.5mM PCPA
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1mM PCPA was able to inhibit the NSPC proliferation significantly (Fig. 6.2B). 

Inhibition of 5-HT production using PCPA reduced the cell proliferation rate of the 

cultured NSPCs suggesting that the 5-HT produced by the NSPCs was required 

for the maintenance of NSPC proliferation. 

 

6.3.3. Expression of TPH1 and TPH2 during differentiation of NSPCs 

 

Since it was possible that the 5-HT was important in the maintaining the NSPCs 

in the proliferative state, we decided to check the profile of the TPH1 and TPH2 

expression during the process of differentiation. We plated the NSPCs on a 

monolayer and induced them to differentiate for 3 and 7 days before extracting 

the mRNA from the cells to check for expression of TPH1 and TPH2 using RT-

PCR. Results showed that, upon differentiation, TPH1 expression dropped on the 

third day of differentiation and was hardly detectable after 7 days of 

differentiation (Fig. 6.3). TPH2 expression, however, persisted after 

differentiation for 7 days (Fig. 6.3). 

 

This result was further confirmed using immunofluorescence staining using anti-

TPH1 and anti-TPH2 antibodies together with anti-vimentin and anti-PSA-NCAM 

antibodies. Vimentin was expressed in NSPCs and upon differentiation its 

expression decreased. PSA-NCAM on the other hand increased in expression 

upon NSPC differentiation and its expression persisted from the neuroblast stage 

to the immature neuron stage.  
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Figure 6.3. Expression of TPH1 and TPH2 in during differentiation of NSPCs.
NSPCs were plated as a monolayer and induced to differentiate using 0.5% fetal
bovine serum. mRNA was isolated from the undifferentiated NSPCs, NSPCs
differentiated for 0 day, 3 days and 7 days. RT-PCR was conducted using specific
primers to TPH1 and TPH2 transcript.
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Upon differentiation, the expression of the TPH1 started to decrease from 1st day 

of differentiation and continue to decrease during differentiation (Fig. 6.4). The 

expression of vimentin started to decrease in a slower fashion with some of the 

cells still expressing vimentin after 14 days of differentiation (Fig. 6.4A, 6.5A). 

Moreover, the expression of PSA-NCAM increased upon differentiation starting 

from day 1 (Fig. 6.4B, 6.5B). However, due to the fact that PSA-NCAM was only 

expressed in young neurons, its expression was only observed in about 10-20% 

of the total cells. TPH2 expression was relatively weak in the immunostaining. 

Upon differentiation, TPH2 expression persisted throughout NSPC proliferation, 

however, it was found to be localized in the nuclei in most of the cells (Fig. 6.5). 

 

6.3.4. Analysis of cell proliferation in TPH1 KO mice 

 

As TPH2 is reported to be predominantly expressed in the brain while TPH1 is 

reported to be expressed at the peripheral nervous system (Zhang et al., 2004), 

we attempt to identify the role of TPH1 expression in the NSPCs and its likely 

effect on NSPC proliferation. TPH1 might be pivotal in the induction of cell 

proliferation as it was known to have a higher enzymatic activity and its presence 

might play an important role in self- regulation of cell proliferation of the NSPCs. 

We had obtained TPH1 knockout (KO) mouse and used it to analyze the 

proliferation of the NSPCs in the hippocampus. Results indicated that the cell 

proliferation rate of the TPH1 KO mice in the dentate gyrus of the hippocampus 

was significantly lower than that in wild-type littermates (Fig. 6.6A and B).  

 160



Figure 6.4. Expression pattern of TPH1 upon differentiation of hippocampal NSPCs.
Hippocampal NSPCs were differentiated for various durations and immunostained with (A)
anti-TPH1 and anti-vimentin and (B) anti-TPH1 and anti-PSA-NCAM. To show the
progression of differentiation, vimentin is used as a marker for NSPCs and PSA-NCAM is
used as a marker for developing neuroblasts. The scale bar represents 10μm.
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Figure 6.5. Expression pattern of TPH2 upon differentiation of hippocampal NSPCs.
Hippocampal NSPCs were differentiated for various durations and immunostained with (A)
anti-TPH2 and anti-vimentin and (B) anti-TPH2 and anti-PSA-NCAM. To show the
progression of differentiation, vimentin is used as a marker for NSPCs and PSA-NCAM is
used as a marker for developing neuroblasts. The scale bar represents 10μm.
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Figure 6.6. Effect of TPH1 KO on NSPC proliferation in the dentate gyrus. BrdU was
injected intraperitonally into four wild-type and four TPH1 KO mice for 2hr to allow BrdU
to incorporate into the dividing NSPCs before sacrifice. The sections were assayed for
BrdU incorporation against the total length of the perimeter of the dentate gyrus.
Statistical analysis was done using Students t-test. (A) BrdU immunopositive cells at the
dentate gyrus of the WT and TPH1 KO mice. (B) NSPC proliferation rate between WT
and TPH1 KO mice. (*P<0.01). The scale bar represents 50μm.
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6.4. Discussion 

 

The results presented have shown that serotonin can induced NSPC proliferation 

and that serotonin may be released from the NSPCs as they expressed both the 

“peripheral” TPH1 and the “neuronal” TPH2. Proliferation of cultured fetal NSPCs 

can be inhibited by non-specifically inhibiting TPH activity using PCPA, further 

implicating the likely regulatory function of serotonin in NSPC proliferation. The 

likelihood of NSPCs using TPH, specifically TPH1, as the main TPH for 

maintaining serotonin levels is further suggested by the fact that  TPH1 

expression is rapidly downregulated at both the mRNA and protein levels upon 

differentiation whereas TPH2 expression levels remain high throughout. This 

suggests the requirement of TPH1 expression and a high serotonin level in 

maintaining the NSPC proliferative state. With the availability of the TPH1 KO 

mice, we have shown that TPH1 KO causes a decrease in the proliferation rate 

of the NSPCs at the dentate gyrus of the TPH1 KO mice brain. 

 

Serotonin has been known to be a morphogen in early brain development and as 

shown by the fact that embryonic stem cells also expressed both TPH1 and 

TPH2 (Walther and Bader, 1999). This suggests the possibility that tight 

regulatory control of serotonin levels may be required during the development 

process and this mechanism has been retained in the NSPCs. This is not 

surprising as NSPCs are still in the process of development and they are able to 

generate new cells, which are capable of differentiation into neurons, 
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oligodendrocytes and astrocytes. That exogenous addition of serotonin can bring 

about an increase in NSPC proliferation suggests that the neural progenitors are 

able to receive serotonin signals, implying that serotonin receptors are expressed 

on the neural progenitors (Fig. 3.2 and 3.3). Indeed, one study has shown that 

5HT1A receptor is expressed on the adult NSPCs in mice (Benninghoff et al., 

2002). Our own studies have also found the presence of some of the serotonin 

receptor subtypes expressed on the NSPCs further pointing to the fact that 

serotonin signals can be perceived by the NSPCs supporting the notion of self-

regulating mechanism of cell proliferation (Fig. 3.3). 

 

It has been shown in many studies that SSRI based antidepressants are able to 

induce an increase in NSPC proliferation (Duman et al., 2001, Encinas et al., 

2006). These studies have been focusing on increasing the availability of the 

serotonin at the synapses to correct the serotonin imbalance that causes 

depression. Moreover, Santarelli et al. (2003) had shown that NSPC proliferation 

and neurogenesis is a requirement for the recovery from depression. With the 

discovery of TPH1 and TPH2 expression in the NSPCs, this further suggests the 

possibility that SSRIs may act directly on the NSPCs through the serotonin 

transporter (SERT). This action may increase the availability of the serotonin 

acting on the NSPCs as they are likely to also produce serotonin with or without 

the presence of the serotonergic synapses from the serotonergic neurons 

projecting from another site. However, a recent study by Schmitt et al. (2007) 

failed to show the expression of the SERT in adult NSPCs isolated from adult 
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mice. Our results, however, suggest that the NSPCs may express SERT only 

during fetal stage (Fig. 3.3). Furthermore, studies from SERT KO mice also 

suggest that knocking out SERT does not affect the NSPC proliferation rate of 

young adult mice as compared to WT. However, the NSPC proliferation rate was 

increased in the NSPCs from SERT KO aged mice as compared to control 

(Schmitt et. al., 2007). Schmitt et al. (2007) also noted that the failure to find 

SERT expression in primary adult NSPCs suggests that the reuptake process 

may not play a role in the regulation of neurogenesis. SSRI’s effect on the neural 

progenitors, however, may be also due to the non-specific effects of SSRI’s 

acting on other receptors or channels (Tytgat et al., 1997; Dierk et al., 2002; 

Eisensamer et al., 2003).  

 

Therefore, the failure to find SERT expression in the adult NSPCs reinforces the 

likelihood that regulation of neurogenesis under normal physiological conditions 

may be controlled by the levels of serotonin. Expression of TPH1 and TPH2 in 

NSPCs further support this notion. As “neuronal” TPH2 is noted to be widely 

expressed in the brain, “peripheral” TPH1 expression in the central nervous 

system is less commonly observed. The expression of TPH1 is especially of 

significance as it is known to be more active serotonin biosynthesis enzyme as 

compared to TPH2 (Nakamura et al., 2006). TPH1’s preferential expression in 

the NSPCs and its downregulation during the process of differentiation provides 

a likely mechanism of regulation of serotonin levels surrounding the NSPCs. It is 

likely that upon differentiation, the levels of TPH1 are downregulated as the 
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proliferative state of the NSPCs no longer needs to be maintained. The 

expression of TPH1 and TPH2 in the primary fetal neural progenitors is not 

restricted to mouse as our microarray data from our unpublished studies shows 

that TPH1 and TPH2 are also expressed in the primary human NSPCs and that 

TPH1 expression levels are higher than those of TPH2. 

 

We also studied the effects of TPH1 KO on NSPC proliferation in TPH1 KO mice. 

As TPH1 is predominantly expressed in the periphery, these TPH1 KO mice lack 

serotonin in the gut, the blood and the pineal gland. However, as for the brain, 

there are only minor reductions in the steady-state serotonin levels in the 

serotonergic regions (Walther and Bader, 2003). These mice allow us to examine 

the effects of TPH1 KO on the NSPCs with minimal concerns of the changes in 

the proliferation rate of the NSPCs are due to the TPH1 KO affecting other 

serotonergic pathways, as the predominant serotonin production in the brain is 

from the TPH2 isoform. We were able to observe a decrease in NSPC 

proliferation in the TPH1 KO as compared to the wild-type littermates suggesting 

that the knocking out TPH1 reduces the serotonin levels surrounding the NSPCs, 

thereby reducing their proliferation rate. This may constitute a plausible 

mechanism for the NSPCs to maintain their constant rate of proliferation without 

relying on external stimuli. Also, external induction of cell proliferation may be 

activated simply by increasing or decreasing the levels of TPH1. However, 

further study will be needed to determine whether such a suggested mechanism 

exists. 
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Clinical studies on TPH1 polymorphisms in humans also suggest that TPH1 

influences the efficacy of treatments for depressions despite the fact that TPH1 is 

not the predominant “neuronal” TPH in the brain. Population studies suggest that 

TPH1 polymorphism are associated with depression, anxiety and comorbid 

depression and anxiety in postpartum women (Sun et al., 2004). A218C allele of 

TPH1 has also been suggested to be associated with increase susceptibility to 

bipolar disorder (Bellivier et al., 1998). Also, another study suggest that the 

patients with some allelic forms of TPH1 failed to respond to fluoxetine 

antidepressant treatment suggesting that TPH1 polymorphisms may be crucial to 

the use of serotonin based treatments in depression (Peters et al., 2004). This 

also suggests that TPH1 is important in the treatment process of depression and 

that recovery process may be related to the NSPC neurogenesis. However, 

contradicting studies reporting no influence of TPH1 polymorphisms on 

depression are also present (Furlong et al., 1998; Frisch et al., 1999; Serretti et 

al., 2001) 

 

In conclusion, serotonin biosynthesis in NSPCs may be a plausible mechanism 

of controlling the NSPC proliferation. This mechanism may constitute self-

regulating of serotonin biosynthesis modulated through TPH1 expression. Upon 

differentiation, which renders the NSPCs non-proliferative, there is a 

downregulation of TPH1 expression, which is reminiscent of the pattern of 

expression during development. This is similar to the expression reported in 
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embryonic stem cells during maturation suggesting that morphogenic 

mechanisms may also operate in the same manner in more restrictive adult 

progenitor cells.  

 



7. GENERAL DISCUSSION, FUTURE STUDIES AND CONCLUSION 

7.1 General Discussion  

 

This study started from the finding that treatments using SSRI-based 

antidepressants are able to increase NSPC proliferation and the effectiveness of 

these antidepressants is dependent on this increase for its behavioral effects 

(Santarelli et al., 2003). This suggests that serotonin may be a regulator of NSPC 

proliferation, either by directly acting on the NSPCs or indirectly using other 

neuronal pathways to activate proliferation. This thesis examines the hypothesis 

that treatment with SSRI antidepressants increases the availability of the 

serotonin at the serotonergic synapses which directly acts on the NSPCs, 

thereby inducing an increase in NSPC proliferation. The presence of serotonergic 

nerve fibres at the neurogenic regions of the brain and the ability of exogenous 

serotonin able to induce NSPC proliferation in culture provided that evidence. 

Pointing further to direct serotonergic induction is the presence of a large number 

of 5-HT receptors subtypes expressed on the NSPCs to perceive the 

serotonergic signals.  

 

However, the presence of a large number of 5-HT receptor subtypes also 

complicates the issues of locating which receptors are involved in the regulation 

of NSPC proliferation. As suggested by Uphouse (1997), the presence of a large 

number of 5-HT receptor subtypes confers a certain advantage to the fine 

modulation of the 5-HT signals. As 5-HT is the natural ligand which activates all 
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5-HT receptors, the overall downstream signaling event would be difficult to 

predict with the presence of large numbers of different 5-HT receptor subtypes. 

Among all these 5-HT receptors, almost all the receptors are G-protein coupled 

receptors. However, different 5-HT receptors coupled to different G-protein 

subtypes activate very different signaling pathways. Some receptors have also 

been suggested to couple to different G-protein subtypes in different cell types 

(Albert et al., 1996).  

 

Therefore, in order to determine which of the 5-HT receptors subtypes is 

implicated in the regulation of NSPC proliferation, the 5-HT receptors are 

activated or blocked using agonists and antagonists before assaying for NSPC 

proliferation. A host of experiments were conducted on the cultured NSPCs, 

which provide a clean and clear-cut system for us to assay proliferation without 

other considerations of additional effects that these agonists and antagonists 

have in vivo. In the in vivo cell proliferation model, we would not be able to 

discount the fact that these agonists or antagonists do not only act on the 

NSPCs, as they could also act on 5-HT receptors on other cell types and 

synaptic pathways which may be a confounding factor to our study. Also, we 

have established a protein and xeno-free vitrification system that will enable us to 

cryopreserve the NSCs for experimental use (Tan et al., 2007; Kuleshova et al., 

2009). This protocol allows the cryopreservation of intact neurospheres which 

can be retrieved with high viability, no chromosomal abnormalities, and intact 

stem cell function with the ability to proliferate normally and differentiate into the 
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neuronal cell types. This established vitrification protocol can also be adapted in 

the future for clinical applications for human NSPC therapeutics. 

 

Out of the 5-HT receptors expressed by the NSPCs, 5-HT1A, 5-HT3 and 5-HT7 

receptors have been chosen for the targets of the study of NSPC proliferation. 

Both 5-HT1A and 5-HT3 receptors have prior been implicated in the modulation 

of NSPC proliferation. 5-HT1A receptors have been shown to promote the NSPC 

proliferation upon activation using a 5-HT1A agonist, 8-OH-DPAT (Banasr et al., 

2004). 5-HT3 receptor has been shown to be blocked by administration of some 

antidepressants and these same antidepressants are also able to induce NSPC 

proliferation (Eisensamer et al., 2003; Santarelli et al., 2003). 5-HT7 receptor is 

been chosen as the commonly used 5-HT1A receptor agonist 8-OH-DPAT has 

been shown to be a partial agonist to 5-HT7 receptor which require a more detail 

study to delineate whether 5-HT1A or 5-HT7 receptor activation causes NSPC 

proliferation. In the study, it has been determined that activation of 5HT7 receptor 

and the blockade of 5HT3 receptor are able to induce an increase in NSPC 

proliferation. However, contradictory to prior report, 5-HT1A receptors are not 

involved in the induction of NSPC proliferation (Banasr et al., 2004). 

 

The NSPCs have also being found to express TPH1 and TPH2, which suggests 

that NSPCs are capable of synthesizing 5-HT. Together with previous results, 

this suggests that the regulation of extracellular serotonin levels may be a 

mechanism for controlling NSPC proliferation. The presence of serotonin 
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synthesis enzymes in the NSPCs provides the possibility of self-regulation of 

proliferation. Among the two TPH isoforms, TPH1 has a higher synthesis activity 

and it is expressed highly in the peripheral nervous system and rarely in the 

CNS. Its presence in the NSPCs suggests the likelihood that high serotonin 

levels are required for the maintenance of NSPCs in their proliferative stage. This 

is especially significant as upon induction of differentiation, the levels of TPH1 

drop, suggesting that serotonin levels need to be maintained only at the 

proliferative, non-differentiated stage. Proliferation assays conducted on TPH1 

KO mice showed that the TPH1 KO caused a significant reduction of 

proliferation, further implying the need for TPH1 activity for maintenance of 

proliferation. These results are made more significant as in the TPH1 KO mice, 

the levels of brain serotonin has not been globally altered due to the presence of 

the more dominant neuronal TPH2 (Walther and Bader, 2003). This suggests 

that the effect of the TPH1 KO on the NSPC proliferation is likely to be confined 

to the neurogenic regions and not cause by the knockout of TPH1 changing the 

other neuronal pathways. 

 

7.2. Future Studies 
 

More work needs to be done in order to clearly delineating the relationships 

between the serotonergic system and NSPC proliferation. This is especially so 

when NSPCs were shown to express a large number of 5-HT receptors at the 

transcriptional level. Furthermore, the NSPCs also express TPH1 and TPH2, 

 173



suggesting that the NSPCs may be releasing 5-HT, which may self-regulate the 

NPSCs own proliferation further complicating the mechanism of action. 

 

The serotonergic fibres innervating near the subgranular zone of the dentate 

gyrus and the subventricular zone of the lateral ventricles were shown to be 

close to the regions where the NSPCs and neurogenesis occurs. However, the 

resolution of the contact between the serotonergic neurons and the NSPCs can 

be further enhanced by employing triple immunostaining of the serotonergic 

fibres using anti-serotonin antibody, synaptic markers such as synapsin or 

synaptotagmin and a stem cell marker such as Sox2 or nestin. The 

immunostaining and in addition electron microscopy would allow further 

examination of the serotonergic fibres contact on the NSPCs at the ultrastructural 

level. 

 

To further examine these likely mechanisms of control of NSPC proliferation, 

experiments can be conducted to investigate the dynamics of 5-HT receptor 

expression. NSPCs may consist of a pool of cells at different divisional stages 

which, at each stage, may express a subset of the 5-HT receptors. Single cell 

RT-PCR can be conducted on the NSPCs to allow the examination of whether all 

the NSPCs express the different 5-HT receptors. Cell division stage markers 

such as PTEN, c-fos, PCNA and ki67 could be used to identify the specific cell 

division stages of the NSPCs. These results can be further verified using western 

blotting and immunostaining. 
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Pharmacological methodologies used in these studies sometimes present certain 

challenges in terms of interpretation due to the non- or partial selectivity of the 

agonists and antagonists used. A more direct way will be to knockdown and 

perhaps overexpress the specific 5-HT receptors to examine the effects of the 

knockdown and overexpression on the overall proliferation of the NSPCs. 

Furthermore, knocking down a receptor followed by addition of the agonist will 

allow the examination of whether the agonist effect is specific to the particular 5-

HT receptor. These knockdown NSPCs can also be used to assay for the 

changes in the NSPC proliferation rate due to the knockdown. 

 

The 5-HT receptor, being a G-protein coupled receptor, worked by modulating 

the activity of adenylate cyclase. This suggests that the likely signaling cascade 

in the NSPC with the activation of particular 5-HT receptors. The adenylate 

cyclase would also be able to influence the phosphorylation states of ERK1/2, 

which has been implicated in cell proliferation. The phosphorylation states of 

ERK1/2 can also be measured using western blotting, which will indicate the 

effects of the agonist on the NSPC proliferation. 

 

As this thesis utilize heavily the methodology of MTS assay, which measures the 

end point increase in the number of cells, it would be worthwhile to also examine 

the proliferation of the NSPCs using another methodology to further confirm the 

effects on the serotonergic systems are specific to proliferation. BrdU 
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incorporation assay or measuring the presence of Ki-67 positive cells could also 

provide another cell proliferation index for the measurement. 

 

In the findings of the presence of TPH1 and TPH2 expression in the NSPCs, it 

was suggested that the NSPCs might be capable of releasing 5-HT. However, in 

this study, we have yet to directly examine such a notion. To further examine 

this, HPLC or 5-HT ELISA could be conducted on the culture medium of the 

NSPCs to check if 5-HT has been release into the medium by the NSPCs in 

culture. Also, PCPA can be treated to the NSPCs to inhibit the TPH activity and 

examine the level of 5-HT in the medium again to show that the 5-HT levels are a 

direct consequence of TPH1 and TPH2 expression. With the availability of the 

TPH1 mice, we can further examine the difference in levels of the 5-HT being 

release into the medium between the wild type and the TPH1 NSPCs, further 

examine the importance of TPH1 expression in the NSPCs. 

 

7.3. Conclusion 
 

Taken together, all these results suggest the role of 5-HT in regulating NSPC 

proliferation (Figure 7.1). 5-HT release from NSPCs may be used as a basal 

trigger for maintenance proliferation as NSPCs are capable of self-renewal at a 

fixed proliferative rate. Direct 5-HT release onto the NSPCs, either by the 

serotonergic neurons near the neurogenic regions or by the modulation of 

serotonin release from the NSPCs themselves may trigger an increase in 

proliferation. The increase and decrease in proliferation can be modulated by the
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Figure 7.1. Summary of the effects of serotonergic systems and serotonin on NSPC
proliferation. Antidepressants were known to act as SSRIs, which will increase the available
serotonin at the serotonergic synapses by inhibiting SERT activity. The increase in serotonin
will directly act on the NSPCs, which express 5-HT receptors, or indirectly, through indirect
pathways involving other neurotransmitter systems, to affect NSPC proliferation. Alternatively,
as NSPCs express both TPH1 and TPH2 suggesting that they are capable of synthesizing
serotonin, basal NSPC proliferation may be self-regulated by controlling serotonin release. As
SERT is also expressed on NSPCs, antidepressants may act directly on the SERT on the
NSPCs to increase the available serotonin to act on the 5-HT receptors on the NSPCs. The
increase in NSPC proliferation is a requirement for the behavioral effect of recovery from
depression.
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levels of 5-HT, as is evident from the TPH1 KO studies. The controls of NSPC 

proliferation  is most likely modulated through the balance of signals received by 

the host of 5-HT receptors, with 5-HT3 and 5-HT7 receptors being two of the 

receptors that we have shown to be involved in this modulation of NSPC 

proliferation. 
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