1,449 research outputs found

    A monopole antenna at optical frequencies: single-molecule near-field measurements

    Get PDF
    We present a monopole antenna for optical frequencies (~600 THz) and discuss near-field measurements with single fluorescent molecules as a technique to characterize such antennas. The similarities and differences between near-field antenna measurements at optical and radio frequencies are discussed in detail. Two typical antenna properties, polarization selectivity and resonances, are studied for the optical monopole by direct near-field measurements and finite integration technique calculations. The antenna is driven by the local field of a sub-wavelength aperture. This gives rise to a dependence of the antenna response on the orientation of the local field vector, in an analogous way to the polarization selectivity of linear wire antennas. The antenna resonances are studied by varying the antenna length. Typical monopole resonances are demonstrated. The finite conductivity of metals at optical frequencies (in combination with the antenna radius) causes the wavelength of the surface charge density oscillation (surface plasmon polariton) along the antenna to be shortened in comparison to the free space wavelength. As a result, resonances for the optical monopole antenna occur at much shorter relative lengths than for conventional radio monopole antennas\ud \u

    Nanorod optical antennas for dipolar transitions

    Get PDF
    Optical antennas link objects to light. Here, we analyze metal nanorod antennas as cavities with variable reflection coefficients to derive the interaction of dipolar transitions with radiation through the antenna modes. The presented analytical model accurately describes the complete emission process, and is summarized in a phase-matching equation. We show how antenna modes evolve as they become increasingly more bound, i.e. plasmonic. The results illustrate why efficient antennas should not be too plasmonic, and how subradiant even modes can evolve into weakly-interacting dark modes. Our description is valid for the interaction of nanorods with light in general, and is thus widely applicable.Comment: 10 pages, 4 figures, submitte

    Optical antennas for single emitters

    Get PDF
    The interaction of light with matter is a central topic in both fundamental science and applied technology. At the heart of this interaction lies the absorption or emission of a photon by an electronic transition in for example an atom, molecule or semiconductor. Because such quantum emitters are generally much smaller than the wavelength of light, they interact slowly and omnidirectionally with light, limiting their absorption and emission. At radio frequencies similar issues were encountered and addressed long ago. Electrical circuits radiate little because they are much smaller than the corresponding wavelength. To enable wireless communication, they are connected to antennas that have dimensions in the order of the wavelength. These antennas are designed to effectively convert electrical signals into radiation and vice versa. The same concept can be applied in optics. The central idea of this thesis is that the interaction of a quantum emitter with light can be improved by near-field coupling it to the resonant plasmon modes of a metal nano-particle, which then acts as an optical antenna. In this way, excitation and emission rates can be enhanced, and the angular, polarization, and spectral dependence controlled. Chapter 1 of this thesis outlines these concepts and introduces optical antennas for single emitters. The experimental demonstration of optical antennas requires the near-field coupling of a single emitter to a resonant optical antenna. We fabricated optical monopole antennas on scanning probes, so that they can be precisely positioned near single fluorescent molecules. In this way we directly mapped the changes in the excitation and emission of a single quantum emitter as it is scanned near the antenna. Chapter 2 presents the results for the excitation part of the interaction. The enhanced excitation field at the antenna is highly confined (within 25 nm); the emitter only interacts with the antenna mode over this short distance. The antenna resonances were probed directly in the near-field and show that the antenna is indeed an optical analog of a monopole antenna. The experiments in Chapter 3 demonstrate how the antenna controls the emission. If the emitter is placed at the right position and if the antenna is tuned to resonance, the angular emission of the coupled system is determined by the antenna mode, regardless of the orientation of the emitter. In Chapter 4, we exploit that fact. We demonstrate, theoretically and experimentally, that the radiation from a single emitter coupled to a multi-element optical Yagi-Uda antenna is highly directed. We show that by reciprocity such a high directivity both enhances the excitation field and the collection efficiency. An intuitive way to understand optical antennas is as cavities for surface plasmon polaritons. In chapter 5, I present an extended description of the interaction of dipolar emitters with radiation through nano-rod antenna modes, by treating the antenna as a cavity. The results demonstrate how the properties of the antenna modes evolve from macroscopic perfectly conducting antennas to nanoscale plasmonic antennas, and highlight the similarities and differences between optical and conventional antennas. The results presented in this thesis show that optical antennas provide a new way to link single emitters to light. By designing the antenna the absorption and emission properties of the emitter can be tailored. More generally, optical antennas enhance and control light-matter interaction on the nano-scale, making them promising tools for applications in topics as diverse as high resolution near-field scanning optical microscopy, non-linear optics and spectroscopy, and photovoltaic devices.La interacción entre luz y materia es fundamental tanto en ciencia básica como en tecnología aplicada. En el corazón de esta interacción están la emisión y absorción de fotones en transiciones electrónicas de, por ejemplo, átomos, moléculas o semiconductores. Tales emisores cuánticos son más pequeños que la longitud de onda de la radiación con la que interaccionan. La interacción es entonces lenta y omnidireccional, lo que limita los procesos de absorción y emisión. En radio frecuencias este mismo problema fue resuelto tiempo atrás. Los circuitos eléctricos radián poco por ser más pequeños que las ondas de radio. La comunicación inalámbrica es posible sólo si los circuitos están conectados a antenas con dimensiones del orden de la longitud de onda. Las antenas son diseñadas para convertir efectivamente señales eléctricas en radiación y viceversa. Este principio se extender a la óptica. La idea central de esta tesis es que la interacción entre la luz y un emisor cuántico incrementa cuando éste es acoplando, en el campo cercano, a los modos plasmónicos resonantes de una nano-partícula metálica. La partícula actúa entonces como una antena óptica. Es posible entonces aumentar las tasas de excitación y emisión, y controlar la dependencia angular, espectral y en polarización. El capítulo 1 de ésta tesis explica estos conceptos e introduce las antenas ópticas para emisores individuales. Para implementar experimentalmente una antena óptica es necesario acoplar en campo cercano un emisor individual a una antena resonante. Como las antenas ópticas monopolares fueron fabricadas sobre sondas de barrido, podemos ubicarlas con precisión cerca a una molécula fluorescente. Es así como escaneando un emisor cuántico singular cerca a la antena es posible mapear los cambios en la excitación y la emisión. El capítulo 2 presenta los resultados relativos a la parte de la interacción correspondiente a la excitación. El campo excitado en la antena está altamente confinado (25 nm); el emisor solo interactúa con los modos de la antena dentro de esta pequeña región. Las resonancias, probadas directamente en el campo cercano, muestran que en efecto la antena es el análogo óptico a una antena monopolar. Los experimentos en el capítulo 3 muestran como la antena controla la emisión. Cuando el emisor se ubica en la posición correcta y la antena está en resonancia, la emisión del sistema acoplado es determinada por el modo de la antena, independientemente de la dirección del emisor. El capítulo 4 explora esta característica. Teórica y experimentalmente, hemos demostrado la alta direccionalidad de la radiación de un emisor individual cuando es acoplado a una antena Yagi-Uda de múltiples elementos. Por reciprocidad, esta direccionalidad incrementa tanto el campo de excitación como la eficiencia de acoplamiento. En una forma intuitiva las antenas ópticas se pueden entender como cavidades para los plasmones-polaritones de superficie. Tratando las antenas como cavidades, el capítulo 5 presenta una descripción de la interacción entre los emisores dipolares y la radiación mediada por los modos de las nano-antenas. Los resultados muestran como las propiedades de estos modos evolucionan desde las antenas macroscópicas perfectamente conductoras hasta las nano-antenas plasmónicas. Los resultados también explican las diferencias entre las antenas ópticas y las convencionales. Los resultados presentados en esta tesis prueban que las antenas ópticas son una nueva alternativa para acoplar luz a emisores cuánticos individuales. Las propiedades de absorción y emisión del emisor pueden ser controladas diseñando adecuadamente las antenas. Las antenas ópticas permiten amplificar y controlar la interacción entre radiación y materia en la escala nanométrica, convirtiéndolas en herramientas importantes en campos muy diversos. Por ejemplo, en microscopia óptica de campo cercano, en información cuántica, en óptica no lineal, en espectroscopia y en dispositivos fotovoltaico

    Between contestation and collaboration:The internal dynamics of multidisciplinary accounting firm responses to institutional pressures

    Get PDF
    The colonization of adjacent professional fields has been considered as crucial to understanding the success and influence of large accounting firms, such as the Big 4. Yet, given the complexities of managing different professional groups, remarkably little is known about the internal dynamics behind large multidisciplinary accounting firms’ external responses to institutional pressures. In this article, we show how exogenous coercive pressure, such as regulation (in this case Dutch accountancy regulations), not only affect the day-to-day work of accountants, but also that of non-accountants such as tax advisors. From the perception of the tax advisors who confront regulations which are not “theirs”, we show how their internal responses evolve and tread a fine line between contestation and collaboration with their colleague accountants/auditors. Using a boundary work perspective, we examine this shift in responses and explain how tensions between professional groups may be reduced. Overall, our study not only furthers our insights into the internal dynamics behind PSFs’ (Professional Service Firms’) external responses, but also sheds light on why professional groups stay on board despite unfavorable internal conditions

    Symposium 4: Food innovations to promote nutritional wellbeing Probiotics for infants and young children

    Get PDF
    The intestinal microflora has an important impact on life and has important implications for health in every human being. Probiotics are life micro-organisms that might have, after consumption in specific quantities, an impact on human health. The mechanisms by which probiotics confer their health effects in general terms will be discussed. Specific reports on the probiotics Bifidobacterium animalis and Lactobacillus paracasei consistently contain statements that both shortterm and long-term feeding of these probiotics to children aged 1-3 years, infants aged 0-12 months, and even to pre-term infants is not associated with differences in growth, stooling/ defecation patterns, behavioural aspects or history of illness compared to control groups. With regard to beneficial clinical effects with probiotics in general, the consistent and world-wide emergence of data that indicate beneficial clinical effects of some probiotic strains like Bifidobacterium animalis and Lactobacillus paracasei in infants and children cannot be ignored. Especially their potential benefit in preventing or ameliorating gastrointestinal inflammation and diarrhoea appears to be a realistic notion. First, inflammatory effects should translate into enhanced immunity, diminishment of existing unresponsive inflammation and correction of existing immunological defects. Second, enzymatic activities of probiotic bacteria might correct functional deficits induced by infectious diseases. Although it is unclear what the relevance is at this moment in time, some probiotics strains clearly show immune modulating effects in infants

    Enhancing extraordinary transmission of light through a metallic nano slit with a nano cavity antenna

    Full text link
    The extraordinary transmission of light through a nano slit in a metal film is enhanced by introducing a nano cavity antenna formed by a nearby metallic nano-strip over the slit opening. For a fixed wavelength, the width of the metallic nano-strip should be chosen to make the horizontal metal-insulator-metal waveguide of finite length resonant as a Fabry-Perot cavity. When such a cavity antenna is used to enhance the transmission through a non-resonant nano slit, the slit should be opened at a position with maximal magnetic field in the horizontal resonant cavity. It is shown that an optimized cavity antenna can enhance greatly the transmission of light through a non-resonant nano slit (by about 20 times) or a resonant nano slit (by 124%). The transmission spectrum of the nano slit can also be tuned by adjusting the width of the metallic nano-strip. Such a transmission enhancement with a nano cavity antenna is studied for the first time and the physical mechanism is explained.Comment: 4 pages, 5 figure
    corecore