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ABSTRACT: Optical antennas link objects to light. Here we
derive an analytical model for the interaction of dipolar
transitions with radiation through nanorod antenna modes,
bymodeling nanorods as cavities. Themodel includes radiation
damping, accurately describes the complete emission process,
and is summarized in a phase-matching equation. We analyti-
cally discuss the quantitative evolution of antenna modes, in
particular the gradual emergence of subradiant, super-radiant,
and dark modes, as antennas become increasingly more bound,
i.e., plasmonic. Our description is valid for the interaction of
nanorods with light in general and is thus widely applicable.

KEYWORDS:Optical antennas, nanoantennas, metal nano-
rods, subradiance, darkmodes, electric andmagnetic dipole emitters

Optical antennas improve the interaction of an object with
optical radiation by means of a near-field coupling. The

object absorbs and emits light through the antenna modes.1,2

Metallic nanoparticles are especially suited as optical antennas
because they support confined plasmon modes that respond
strongly to light.3,4 With optical antennas, the electronic transi-
tions of quantum emitters, such as molecules and quantum
dots, can be controlled. Excitation and emission rates are
enhanced,5-7 the spectral dependence shaped,8 and the angular
emission directed.2,9,10

To understand optical antennas, and how they differ from
conventional antennas, the Mie solutions are available for ellip-
soids8,11 and extensive numerical studies are performed for other
shapes.12 More intuitively, antennas have been described as reso-
nators or (Fabry-P�erot) cavities.1,13-22 If thewave vector along the
antenna is known, the spectral position of the resonant modes can
be determined.23-25However, the functionality of an antenna is not
given by the value of the resonance length or wavelength alone, but
by how its modes interact with a local object and with radiation.

In this Letter, we derive an analytical model for the interaction
of dipolar transitions with radiation through nanorod optical
antenna modes, by treating nanorods as one-dimensional cav-
ities. The wavelength in the cavity is given by the waveguide
modes of an infinitely long rod, whereas the reflection coefficient

at the antenna ends is determined by the radiation damping of the
formed cavity mode. The obtained analytical model accurately
describes all the emission characteristics: the radiative decay rate,
quantum efficiency, and angular emission. We use the model to
quantitatively reveal the continuous evolution of antenna modes
from perfectly conducting antenna theory to quasi-static plasmonics,
i.e., from macroscopic to nanoscale antennas, with a focus on the
gradual emergence of super-radiant, subradiant, and dark modes.

Consider an elongated antenna of physical length Lp with a
central section, of constant cross-sectional shape and size, that
supports a charge density wave with wave vector k = kẑ

k ¼ k0 þ ik00 ð1Þ
The wave is reflected at both the antenna ends, which form a
resonator that we model as a two-mirror cavity, Figure 1a. The
model developed applies to any cross-sectional shape, provided
that k can be determined.

The waves originate from a local source at position z = a along
the antenna axis. Figure 1 shows three different sources: an
electric dipole, a magnetic dipole, and a transmission line. The
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dipoles represent electronic dipolar transitions, such as those in a
single molecule or quantum dot; transition rates are proportional
to the emitted power. Electric and magnetic dipoles differ in the
symmetry of the induced waves on opposite sides of the source.
The transition rate for an electric (magnetic) dipole depends on
the electric (magnetic) mode density, i.e., the magnitude of the
impedance. A transmission line resembles a magnetic dipole, but
the fraction of the energy fed into the antenna is determined by
impedance matching instead.26-28 As a result, dipolar transitions
dominantly excite different modes than the center-fed antennas
usually considered in traditional antenna theory.

Resonant modes are expected for physical antenna lengths
that are shifted from the multiples of π/k0 by a constant
value.7,20,25 When the antenna is modeled as a cavity, this
displacement can be introduced by a positive phase shift upon
reflection15,17,20 or by an extended cavity length.25,26,29 The two
corrections give the same resonant length but are otherwise not
equivalent. We choose to set an extended length L = Lpþ Lc and
a real-valued reflection coefficient r.

To derive the resultant current distribution I(z,a) we do not
distinguish between conduction and displacement currents and
assume a one-dimensional (1D) sinusoidal distribution. A super-
position in complex notation for time-harmonic waves gives,
for -L/2 e z < a

Iðz, aÞ ¼ I0ðeika ( reikLe-ikaÞ
1- r2e2ikL

ðreikLeikz - e-ikzÞ ð2Þ

and for a < z e L/2

Iðz, aÞ ¼ I0ðreikLeika ( e-ikaÞ
1- r2e2ikL

ðeikz - reikLe-ikzÞ ð3Þ

The initial amplitude of the induced wave, I0, depends on the
type of dipole, its oscillator strength, and the three-dimensional
(3D) configuration andmodal fields.23,29 Its value is not specified
here, and because all the calculated rates are taken relative to other
antenna lengths, none of the presented results depends on it.

The plus (þ) signs in eq 2 and eq 3 are for electric dipoles and
the minus (-) signs for magnetic dipoles; electric and magnetic
dipoles couple effectively to the antenna modes at different
positions, a result of the symmetry argument in Figure 1. The

magnetic mode density maxima coincide with the electric mode
density minima and vice versa.

The far field observed at r0 is given by

Eθ ¼ E0

Z L=2

-L=2
Iðz, aÞe-ik )z dz ð4Þ

in which E0 = iη0k0e
ik0r0 sin θ/(4πr0) is the field of a point dipole

at the origin, and k ) = k0 cos θ is the parallel component of the
wave vector k0 in the surrounding medium of impedance η0. The
other components of the electric field are zero. After evaluating
the integral, eq 4 becomes

Eθ ¼ iI0E0
1- r2e2ikL

A
reikLe-iðk ) - kÞz
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in which A = eika( reikLe-ika and B = reikLeika( e-ika contain the
dependence on the dipole position.

The angular emission in eq 5 gives a complete description of
the interaction of the antenna with a dipole and with radiation.
The equation describes the emission of the dipole through the
antenna mode and, by reciprocity,9 its excitation by radiation.
Indeed, by setting r = 1, which is equivalent to neglecting
radiation damping, the results for the excitation of nanorods
from Fabry-P�erot models18,29 can be derived from eq 5 (see
Supporting Information).

Next, we use the derived model to account for the radiation
damping, study the main characteristics of optical antennas in a
set of concrete examples, and compare the results to numerical
simulations. We show in particular how the antenna character-
istics evolve as the modes become increasingly more bound, i.e.,
plasmonic. As a measure of how bound antenna modes are, we
define an effective index K

K � k0=k0 ð6Þ
As a concrete case we choose cylindrical gold antennas with

hemispherical ends, Figure 1a. The advantage of cylinders is that
semianalytical waveguide solutions exist.23 We study three radii,
R = 20, 10 and 5 nm, which lead to three different values for K for
the TM0 modes.23,25 The antenna length L is varied for a
constant wavelength. As a source, we choose an electric dipole
at the antenna end, because it effectively excites all relevant
resonant modes. The dipole source in the 1D model is placed at
the end of the extended cavity length: a = -L/2.

We first neglect the effect of the radiation damping on
the current distribution by setting r = 1 and study the radiation
damping by means of the radiation resistance, which we define
as26

Rrad � 2P=I2max ð7Þ

P is the total emitted power obtained by integrating the emitted
far field given by eq 5, and Imax is the maximum of |I(z)|, eq 2 and
eq 3. The radiation resistance gives the radiation damping per
unit amplitude in the resonator; it is independent of the total
amplitude and is a characteristic of the spatial distribution of the
mode. After studying the radiation resistance, we will account for

Figure 1. (a) The antenna (total length Lp) is a rod of constant cross-
sectional shape and size that supports a charge-density wave (wave
vector k), which is reflected at both antenna ends.Wemodel the antenna
as a 1D cavity with length L and amplitude reflection coefficient r. The
antenna is driven by a local source at position z = a. As a concrete
example to compare to numerical calculations, we study gold cylindrical
antennas with radius R and hemispherical ends. (b-d) Three local
sources and the direction of the waves induced: (b) electric and (c)
magnetic dipole, (d) transmission line.
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the effect of the radiation damping on the amplitude of the mode
by relating the reflection coefficient r to the radiation resistance.

The evolution of the radiation resistance with increasingly
bound modes is illustrated in Figure 2, which shows Rrad as a
function of L for the three optical antennas, together with the
limiting cases of K = 1 (thin perfectly conducting antenna), and
large K (quasi-static limit). We make the following three initial
observations. First, the modes excited by electric dipoles at
a = -L/2 differ from transmission-line center-fed antenna
modes.30 Magnetic dipoles at a = 0 do reproduce the results
for center-fed perfectly conducting30 (K = 1) and carbon nano-
tube28 (K = 100) antennas. Second, unlike forK = 1, the radiation
resistance for optical antennas does not increase with increasing
length; the waves are bound. Third, the radiation resistance
decreases with increasingly bound modes, i.e., increasing K.

In the quasi-static limit ofK. 1,K� 1/R.23 Equation 5 yields
the scaling law Rrad � 1/K2, which thus also implies Rrad � R2.
Furthermore, if one requires the resonances to depend only on
the shape (or aspect ratio) of the antenna not on its absolute
dimensions, then one must have Lc � R, or equivalently the
reflection phase must be a constant, which gives a compelling
argument supporting previous postulates,25 and unexpected
calculation results.21,31

We label the resonant modes j = 1, 2, ..., with L = jπ/k0. Even
and odd modes evolve differently. The radiation resistance of
even modes diminishes with increasing K. These modes have

antisymmetric current distributions and no net dipolemoment.32

For antennas shorter than half the free-space wavelength, such
modes become subradient; opposite-oriented current elements
cancel and the radiation resistance tends to zero. Odd modes
behave oppositely and evolve into super-radiant modes with high
radiation resistance. The criterium for super- and subradiance to
manifest itself can be simply written as K/j > 1.

Because of super- and subradiance, the radiation damping
clearly depends on the antenna length L; a nanorod is not a
simple Fabry-P�erot cavity. Because the wave is bound, the
radiation damping must be taken into account through the
reflection coefficient r, which means that r 6¼ 1 and that r has
to be a function of L. We relate r to the radiation resistance

rðLÞ ¼ Z- Rrad=2
Zþ Rrad=2

ð8Þ

in which Z is the real part of the antenna wave impedance and is
determined from the waveguide solutions (i.e., considering an
infinitely long rod) as: Z = 2

R
S 3 dA/|

R
J 3 dA|

2, in which S is the
time-averaged Poynting vector, J is the current density, dA is
oriented along the waveguide, and both integrals are over an
infinite plane perpendicular to thewaveguide. ForK. 1,Z�K,23 so
that r approaches unity for large K (small radius R).

Equation 8 takes the form of an impedance matching equation
and was obtained by equating the reflection loss in the cavity
model with the radiation by the antenna. It relies on three
arguments. First, all radiative loss is due to reflection, because
the plasmon wave is bound. Second, the dissipation is small so
that Imax is an approximate measure for the currents at all
positions. Third, eq 8 introduces small deviations of r from
unity, which can strongly affect the amplitude of the current
distribution, but not the spatial distribution, so that the calcula-
tion of Rrad with r = 1 remains accurate.

With the radiation damping taken into account, the radiative
transition rate Γrad (�P) can be compared quantitatively be-
tween the different resonant modes, Figure 3a. The relative

Figure 2. Evolution of the radiation resistance Rrad(L) for increasingly
bound antennas, i.e., increasing K. The optical antennas (K = 1.7, 2.9,
and 5.7) are intermediate cases between the limits of perfect electrical
conductors (K = 1) and quasi-statics (K = 100 . 1). Resonant modes
occur if Lk0/π = j, with j an integer: lines, 1D model; circles, 3D
Numerical calculations for cylindrical gold antennas in vacuum (CST
MicroWave Studio, transient solver), Figure 1. Parameters λ0 = 826.6
nm. 3D Numerical: εau = -29 þ 2.0i. Electric dipole at d = (5, 2.5,
1.25) nm for R = (20, 10, 5) nm, respectively (see inset). We used a
hexahedral mesh, with a step size of (2, 1, 0.5) nm and a convergence
criteria of-80 dB. 1D model: Electric dipole at a =-L/2 and r = 1. For
K = 1 and K = 100, k0 0 = 0. For R = 20, 10, and 5 nm: k/k0 = 1.7þ 0.045i,
2.9 þ 0.11i, and 5.7 þ 0.23i, and Lc = 54, 26, and 12 nm.

Figure 3. The radiative transition rate Γrad relative to the rate for j = 1
(a) and the quantum efficiency η (b) for the three optical antennas. All
parameters as in Figure 2, but r from eq 8 with Z = 130.4, 219.4, and
414.8Ω.
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values for Γrad agree well with the numerical results. Without
taking the radiation damping into account, no such agreement is
obtained (see Supporting Information for a comparison).

Although for R = 20 all modes are pronounced, even modes
disappear with increasing K. By reciprocity, a small Γrad also
implies low field enhancements under far-field illumination;9

thesemodes interact weakly with radiation and are dark modes.33

Such dark modes combine subradiance, i.e., an antisymmetric
current distribution (j = even) and a small antenna length
(K/j . 1), with a significant dissipative loss that dominates the
radiative loss. The analytical model presented here thus gives a
quantitative description for the gradual emergence of such dark
modes as antennas become increasingly plasmonic. Note that for
larger K, higher order modes are in general weaker compared to
the j = 1mode; Γrad decays quicker with increasing L, because for
lower Rrad the dissipative losses (k00, per unit length) gain in
importance compared to the radiative losses (r, per reflection or
round trip).

The balance between radiative and dissipative (Γnr) rates is
described by the quantum efficiency η =Γrad/(ΓradþΓnr). Here,
the intrinsic efficiency of the dipole emitter is taken as unity. The
constant nonresonant dissipation due to the proximity of the
dipole to the metal, i.e., due to coupling to lossy surface waves, is
not included in the model and is subtracted from the numerical
results. Thus, η is the antenna efficiency and sets an upper limit to
the quantum efficiency of emission through the antenna modes.

The efficiency decreases withK, Figure 3b. Clearly, an efficient
antenna should not be too plasmonic and should in general
operate away from the quasi-static small-particle plasmon reso-
nance. Because of the low radiation resistance of subradiant
modes, the efficiency of even modes becomes particularly low
and in this case even approaches zero, which explains why those
modes become dark. Note that the local currents and fields are
still resonantly enhanced (eq 2 and eq 3).33 As a result large-K
subradiant modes with low radiation damping, and consequently
narrow line widths, can be advantageous in applications where
efficient conversion into a photon is not required, or even
unwanted. Examples are sensors34 and spasers.35

The angular emission, eq 5, gives the angles under which the
antenna emits and can be effectively excited. Unlike previous 0D
models,36 our model gives the emission patterns of higher order

modes in good agreement with numerical calculations, Figure 4.
Even modes do not interact with radiation perpendicular to the
antenna axis, as expected by symmetry arguments.13,18 Higher
order modes can give multilobed patterns with an odd or even
amount of maxima for odd or even modes, respectively. The
patterns are obviously different from standard antenna theory
(K = 1),29,30 which yields j lobes, whereas optical antennas result
in j or less lobes. The asymmetry in the patterns is caused by the
radiative and dissipative losses and reveals the position of the
dipole source.

We summarize the interaction of the resonant modes with
radiation in a phase-matching equation for nanorods

k )þ ð2mþ 1ÞkL ¼ k0 ð9Þ
In which kL = π/L, and m = 0, 1, 2, ..., approximately give the
angles of maximum interaction, Figure 4.

The number of solutions for eq 9 determines the nature of the
mode. Modes that do not give solutions for eq 9 are subradiant,
do not interact effectively with radiation under any angle, and
always emit as quadrupoles irrespective of the value of j. Modes
with one solution are super-radiant, and always emit as dipoles.
Modes with two or more solutions have multiple lobes and are
neither subradiant nor super-radiant. Odd modes always give at
least one solution,m = (j- 1)/2, whereas even modes only yield
solutions if Lk0 > π (or K/j < 1). The number of solutions, and
thus the angular emission, is determined by the antenna length,
Lk0, and the parity of the mode, not by the actual value of j. In
other words, no direct information on the value of the mode
number j propagates into the far-field, as is expected for a
diffraction problem.

If K . 1, then k ) ( k ≈ (k, and the θ dependence of the
denominator terms in eq 5 can be neglected. The emission is
then a sum of three dipole terms: E0e

ik )L/2, E0e
-ik )L/2, and E0e

ik )a,
with the latter contribution negligible for strong modes. In this
limit, the emission is thus described by two dipoles at the antenna
ends, making a nanorod similar to a two-slit configuration, but
with phases and amplitudes fixed by the plasmon wave. Equation
5 thus gives a mathematical basis for the commonly used intuitive
picture of scattering of the mode at the antenna ends.14,21,37,38

The analytical results agree well with numerical calculations
(Figure 2, Figure 3, and Figure 4). Only two fitting parameters

Figure 4. Angular (θ) emitted power for modes j: R = 20 nm (K = 1.7), all other parameters as in Figure 3; 1Dmodel, line; 3D numerical, circles (blue);
phase matching, eq 9, dots (red).
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were used: k0 and Lc. All other parameters were obtained from the
waveguide solutions. The fitted values for k0 differ by approxi-
mately 5% from the waveguide solutions, which is within the
expected error margin of the numerical calculations. The fitted
values for Lc are close to the previously used 2R,

25 and follow the
trends from previous calculations,21,31 as well as the scaling laws
derived here. For the specific configuration considered here, no
good agreement is obtained if a phase shift, or an integration over
only Lp, is used. The current distribution at the antenna ends is,
in this case, better described by an additional length. However, a
complete description of the ends is an open problem and a
precise study of the problem is likely out of reach of the
approximate 1D model presented here.

To conclude, the analytical model accurately describes the
interaction of dipolar emitters with radiation through nanorod
modes. The model includes radiation damping and is not limited
to the quasi-static approximation, which is crucial because quasi-
static antennas are usually inefficient antennas. The antenna pro-
perties are primarily governed by a single parameter, K = k0/k0,
that describes how plasmonic the antenna modes are and can be
summarized in a phase-matching equation. Although here we
focused on the evolution of the emission properties for increas-
ingly bound waves, particularly the gradual emergence of sub-
radiant, super-radiant and dark modes, the model applies to all
interactions with any spatiotemporal beam and is equally valid for
field enhancement and scattering problems. The results are thus
widely applicable and might lead to further insights and design
rules for optical antennas, nanorod spasers,35 and generally for
coupling light in/from nanorods.13,14,20,21,37
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