378 research outputs found

    The Calibration of the HST Kuiper Belt Object Search: Setting the Record Straight

    Get PDF
    The limiting magnitude of the HST data set used by Cochran et al. (1995) to detect small objects in the Kuiper belt is reevaluated, and the methods used are described in detail. It is shown, by implanting artificial objects in the original HST images, and re-reducing the images using our original algorithm, that the limiting magnitude of our images (as defined by the 50% detectability limit) is V=28.4V=28.4. This value is statistically the same as the value found in the original analysis. We find that āˆ¼50\sim50% of the moving Kuiper belt objects with V=27.9V=27.9 are detected when trailing losses are included. In the same data in which these faint objects are detected, we find that the number of false detections brighter than V=28.8V=28.8 is less than one per WFPC2 image. We show that, primarily due to a zero-point calibration error, but partly due to inadequacies in modeling the HST'S data noise characteristics and Cochran et al.'s reduction techniques, Brown et al. 1997 underestimate the SNR of objects in the HST dataset by over a factor of 2, and their conclusions are therefore invalid.Comment: Accepted to ApJ Letters; 10 pages plus 3 figures, LaTe

    Random and ordered phases of off-lattice rhombus tiles

    Full text link
    We study the covering of the plane by non-overlapping rhombus tiles, a problem well-studied only in the limiting case of dimer coverings of regular lattices. We go beyond this limit by allowing tiles to take any position and orientation on the plane, to be of irregular shape, and to possess different types of attractive interactions. Using extensive numerical simulations we show that at large tile densities there is a phase transition from a fluid of rhombus tiles to a solid packing with broken rotational symmetry. We observe self-assembly of broken-symmetry phases, even at low densities, in the presence of attractive tile-tile interactions. Depending on tile shape and interactions the solid phase can be random, possessing critical orientational fluctuations, or crystalline. Our results suggest strategies for controlling tiling order in experiments involving `molecular rhombi'.Comment: Supp. Info. and version with high-res figures at http://nanotheory.lbl.gov/people/rhombus_paper/rhombus.htm

    Blueschist from the Mariana forearc records long-lived residence of material in the subduction channel

    Get PDF
    From ca. 50 Ma to present, the western Pacific plate has been subducting under the Philippine Sea plate, forming the oceanic Izu-Bonin-Mariana (IBM) subduction system. It is the only known location where subduction zone products are presently being transported to the surface by serpentinite-mud volcanoes. A large serpentine mud ā€œvolcanoā€ forms the South Chamorro Seamount and was successfully drilled by ODP during Leg 195. This returned mostly partially serpentinized harzburgites enclosed in serpentinite muds. In addition, limited numbers of small (1 mmā€“1 cm) fragments of rare blueschists were also discovered. Uā€“Pb dating of zircon and rutile from one of these blueschist clasts give ages of 51.1 Ā± 1.2 Ma and 47.5 Ā± 2.0 Ma, respectively. These are interpreted to date prograde high-pressure metamorphism. Mineral equilibria modelling of the blueschist clast suggests the mineral assemblage formed at conditions of āˆ¼1.6 GPa and āˆ¼590 Ā°C. We interpret that this high-pressure assemblage formed at a depth of āˆ¼50 km within the subduction channel and was subsequently exhumed and entrained into the South Chamorro serpentinite volcano system at depths of āˆ¼27 km. Consequently, we propose that the material erupted from the South Chamarro Seamount may be sampling far greater depths within the Mariana subduction system than previously thought. The apparent thermal gradient implied by the pressureā€“temperature modelling (āˆ¼370 Ā°C/GPa) is slightly warmer than that predicted by typical subduction channel numerical models and other blueschists worldwide. The age of the blueschist suggests it formed during the arc initiation stages of the proto-Izu-Bonin-Mariana arc, with the Pā€“T conditions recording thermally elevated conditions during initial stages of western Pacific plate subduction. This indicates the blueschist had prolonged residence time in the stable forearc as the system underwent east-directed rollback. The Mariana blueschist shows that subduction products can remain entrained in subduction channels for many millions of years prior to exhumation

    Palaeoproterozoic eclogites: exhumation and burial convolution of P-t histories

    Get PDF
    Dillon Brown, RenƩe Tamblyn, Martin Hand, and Laura Morrisse

    Results from a Near Infrared Search for Emission-line Stars in the Inner Galaxy: Spectra of New Wolf-Rayet Stars

    Full text link
    We present follow-up spectroscopy of emission line candidates detected on near-infrared narrow band images in the inner Galaxy (Homeier et al. 2003). The filters are optimized for the detection of Wolf-Rayet stars and other objects which exhibit emission--lines in the 2 Ī¼\mum region. Approximately three square degrees along the Galactic plane have been analyzed in seven narrow--filters (four emission--lines and three continuum). We have discovered 4 new Wolf-Rayet stars and present coordinates, finding charts, and K-band spectra.Comment: To appear in Astronomy & Astrophysic

    Relating Energy Level Alignment and Amine-Linked Single Molecule Junction Conductance

    Full text link
    Using photoemission spectroscopy, we determine the relationship between electronic energy level alignment at a metal-molecule interface and single-molecule junction transport data. We measure the position of the highest occupied molecular orbital (HOMO) relative to the Au metal Fermi level for three 1,4-benzenediamine derivatives on Au(111) and Au(110) with ultraviolet and resonant x-ray photoemission spectroscopy. We compare these results to scanning tunnelling microscope based break-junction measurements of single molecule conductance and to first-principles calculations. We find that the energy difference between the HOMO and Fermi level for the three molecules adsorbed on Au(111) correlate well with changes in conductance, and agree well with quasiparticle energies computed from first-principles calculations incorporating self-energy corrections. On the Au(110) which present Au atoms with lower-coordination, critical in break-junction conductance measurements, we see that the HOMO level shifts further from the Fermi level. These results provide the first direct comparison of spectroscopic energy level alignment measurements with single molecule junction transport data
    • ā€¦
    corecore