136 research outputs found

    Predictability of Lagrangian particle trajectories: Effects of smoothing of the underlying Eulerian flow

    Get PDF
    The increasing realism of ocean circulation models is leading to an increasing use of Eulerian models as a basis to compute transport properties and to predict the fate of Lagrangian quantities. There exists, however, a significant gap between the spatial scales of model resolution and that of forces acting on Lagrangian particles. These scales may contain high vorticity coherent structures that are not resolved due to computational issues and/or missing dynamics and are typically suppressed by smoothing operators. In this study, the impact of smoothing of the Eulerian fields on the predictability of Lagrangian particles is first investigated by conducting twin experiments that involve release of clusters of synthetic Lagrangian particles into true (unmodified) and model (smoothed) Eulerian fields, which are generated by a QG model with a flow field consisting of many turbulent coherent structures. The Lagrangian errors induced by Eulerian smoothing errors are quantified by using two metrics, the difference between the centers of mass (CM) of particle clusters, ρ, and the difference between scattering of particles around the center of mass, s. The results show that the smoothing has a strong effect on the CM behavior, while the scatter around it is only partially affected. The QG results are then compared to results obtained from a multi-particle Lagrangian Stochastic Model (LSM) which parameterizes turbulent flow using main flow characteristics such as mean flow, velocity variance and Lagrangian time scale. In addition to numerical results, theoretical results based on the LSM are also considered, providing asymptotics of ρ, s and predictability time. It is shown that both numerical and theoretical LSM results for the center of mass error (ρ) provide a good qualitative description, and a quantitatively satisfactory estimate of results from QG experiments. The scatter error (s) results, on the other hand, are only qualitatively reproduced by the LSM

    Impact of Boundary Conditions on Entrainment and Transport in Gravity Currents

    Get PDF
    Gravity currents have been studied numerically and experimentally both in the laboratory and in the ocean. The question of appropriate boundary conditions is still challenging for most complex flows. Gravity currents make no exception - appropriate, physically and mathematically sound boundary conditions are yet to be found. This task is further complicated by the technical limitations imposed by the current oceanographic techniques. In this paper, we make a first step toward a better understanding of the impact of boundary conditions on gravity currents. Specifically, we use direct numerical simulations to investigate the effect that the popular Neumann, and less popular Dirichlet boundary conditions on the bottom continental shelf have on the entrainment and transport of gravity currents. The finding is that gravity currents under these two different boundary conditions differ most in the way they transport heat from the top towards the bottom. This major difference occurs at medium temperature ranges. Entrainment and transport at high temperatures also show significant differences

    A numerical study of layer formation due to fingers in double-diffusive convection in a vertically-bounded domain

    Get PDF
    The evolution of fingers in a double-diffusive system is investigated using numerical integration of two-dimensional equations of motion for an incompressible, Boussinesq fluid. The computational domain is periodic in the horizontal direction and is closed with no-flux boundary conditions in the vertical direction. The main result of this study is the evolution of the system from initially linear profiles for both fast and slow diffusing components to a layered state characterized by a finger zone sandwiched between two mixed layers. The horizontal boundaries in this system play an important role in the development of the layered state. At the top and bottom boundaries, light and heavy finger fluxes accumulate leading to the formation of mixed layers exhibiting larger-scale eddies. In the quasi-equilibrium state, the finger zone is characterized by broken wiggly fingers which do not extend across the entire interface. The salinity flux at the mid-depth of the domain is approximately proportional to the 4/3 power of the salinity difference between the mixed layers, except for the initial phase and for the run-down phase

    Submesoscale dispersion in the vicinity of the Deepwater Horizon spill

    Full text link
    Reliable forecasts for the dispersion of oceanic contamination are important for coastal ecosystems, society and the economy as evidenced by the Deepwater Horizon oil spill in the Gulf of Mexico in 2010 and the Fukushima nuclear plant incident in the Pacific Ocean in 2011. Accurate prediction of pollutant pathways and concentrations at the ocean surface requires understanding ocean dynamics over a broad range of spatial scales. Fundamental questions concerning the structure of the velocity field at the submesoscales (100 meters to tens of kilometers, hours to days) remain unresolved due to a lack of synoptic measurements at these scales. \textcolor{black} {Using high-frequency position data provided by the near-simultaneous release of hundreds of accurately tracked surface drifters, we study the structure of submesoscale surface velocity fluctuations in the Northern Gulf Mexico. Observed two-point statistics confirm the accuracy of classic turbulence scaling laws at 200m-50km scales and clearly indicate that dispersion at the submesoscales is \textit{local}, driven predominantly by energetic submesoscale fluctuations.} The results demonstrate the feasibility and utility of deploying large clusters of drifting instruments to provide synoptic observations of spatial variability of the ocean surface velocity field. Our findings allow quantification of the submesoscale-driven dispersion missing in current operational circulation models and satellite altimeter-derived velocity fields.Comment: 9 pages, 6 figure

    Ocean convergence and the dispersion of flotsam

    Full text link
    Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s−1 and 0.01 ms−1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material

    Ocean convergence and the dispersion of flotsam

    Get PDF
    Floating oil, plastics, and marine organisms are continually redistributed by ocean surface currents. Prediction of their resulting distribution on the surface is a fundamental, long-standing, and practically important problem. The dominant paradigm is dispersion within the dynamical context of a nondivergent flow: objects initially close together will on average spread apart but the area of surface patches of material does not change. Although this paradigm is likely valid at mesoscales, larger than 100 km in horizontal scale, recent theoretical studies of submesoscales (less than ∼10 km) predict strong surface convergences and downwelling associated with horizontal density fronts and cyclonic vortices. Here we show that such structures can dramatically concentrate floating material. More than half of an array of ∼200 surface drifters covering ∼20 × 20 km2 converged into a 60 × 60 m region within a week, a factor of more than 105 decrease in area, before slowly dispersing. As predicted, the convergence occurred at density fronts and with cyclonic vorticity. A zipperlike structure may play an important role. Cyclonic vorticity and vertical velocity reached 0.001 s−1 and 0.01 ms−1, respectively, which is much larger than usually inferred. This suggests a paradigm in which nearby objects form submesoscale clusters, and these clusters then spread apart. Together, these effects set both the overall extent and the finescale texture of a patch of floating material. Material concentrated at submesoscale convergences can create unique communities of organisms, amplify impacts of toxic material, and create opportunities to more efficiently recover such material

    Surface Ocean Dispersion Observations From the Ship-Tethered Aerostat Remote Sensing System

    Get PDF
    Oil slicks and sheens reside at the air-sea interface, a region of the ocean that is notoriously difficult to measure. Little is known about the velocity field at the sea surface in general, making predictions of oil dispersal difficult. The Ship-Tethered Aerostat Remote Sensing System (STARSS) was developed to measure Lagrangian velocities at the air-sea interface by tracking the transport and dispersion of bamboo dinner plates in the field of view of a high-resolution aerial imaging system. The camera had a field of view of approximately 300 × 200 m and images were obtained every 15 s over periods of up to 3 h. A series of experiments were conducted in the northern Gulf of Mexico in January-February 2016. STARSS was equipped with a GPS and inertial navigation system (INS) that was used to directly georectify the aerial images. A relative rectification technique was developed that translates and rotates the plates to minimize their total movement from one frame to the next. Rectified plate positions were used to quantify scale-dependent dispersion by computing relative dispersion, relative diffusivity, and velocity structure functions. STARSS was part of a nested observational framework, which included deployments of large numbers of GPS-tracked surface drifters from two ships, in situ ocean measurements, X-band radar observations of surface currents, and synoptic maps of sea surface temperature from a manned aircraft. Here we describe the STARSS system and image analysis techniques, and present results from an experiment that was conducted on a density front that was approximately 130 km offshore. These observations are the first of their kind and the methodology presented here can be adopted into existing and planned oceanographic campaigns to improve our understanding of small-scale and high-frequency variability at the air-sea interface and to provide much-needed benchmarks for numerical simulations
    corecore