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Predictability of Lagrangian particle trajectories:
Effects of smoothing of the underlying Eulerian � ow

by Annalisa Griffa1,2, Leonid I. Piterbarg3 and Tamay Özgökmen1

ABSTRACT
The increasing realism of ocean circulation models is leading to an increasing use of Eulerian

models as a basis to compute transport properties and to predict the fate of Lagrangian quantities.
There exists, however, a signi� cant gap between the spatial scales of model resolution and that of
forces acting on Lagrangian particles. These scales may contain high vorticity coherent structures
that are not resolved due to computational issues and/or missing dynamics and are typically
suppressed by smoothing operators.

In this study, the impact of smoothing of the Eulerian � elds on the predictability of Lagrangian
particles is � rst investigated by conducting twin experiments that involve release of clusters of
synthetic Lagrangian particles into “true” (unmodi� ed) and “model” (smoothed) Eulerian � elds,
which are generated by a QG model with a � ow � eld consisting of many turbulent coherent
structures. The Lagrangian errors induced by Eulerian smoothing errors are quanti� ed by using two
metrics, the difference between the centers of mass (CM) of particle clusters, r, and the difference
between scattering of particles around the center of mass, s. The results show that the smoothing has
a strong effect on the CM behavior, while the scatter around it is only partially affected.

The QG results are then compared to results obtained from a multi-particle Lagrangian Stochastic
Model (LSM) which parameterizesturbulent � ow using main � ow characteristicssuch as mean � ow,
velocity variance and Lagrangian time scale. In addition to numerical results, theoretical results
based on the LSM are also considered, providing asymptotics of r, s and predictability time. It is
shown that both numerical and theoreticalLSM results for the center of mass error (r) provide a good
qualitative description, and a quantitatively satisfactory estimate of results from QG experiments.
The scatter error (s) results, on the other hand, are only qualitativelyreproduced by the LSM.
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1. Introduction

In the last decade, a great effort has been devoted to improving our capability of
predicting ocean currents through the combined use of high-resolution circulation models
(e.g., Stammer and Chassignet, 2000; Smith et al., 2000) and data assimilation (e.g., Ghil
and Malanotte-Rizzoli,1991; Lorenc, 1986). Many important applicationsof ocean current
prediction are related to transport problems (Coulliette and Wiggins, 2000; Toner et al.,
2001; Mariano et al., 2002; Özgökmen et al., 2003). They include biological and
ecological problems, such as assessment of larvae paths, search and rescue problems, and
prediction of pollutionspreading from industrial plants as well as oil spills due to accidents
at sea. Motivated by the interest in transport problems, a number of different methods have
been developed to accurately compute transport in a given velocity � eld in the ocean. In
general, two categories of techniques have been developed to estimate the Lagrangian
trajectories. The � rst approach relies on existing correlated Lagrangian particle data to
predict trajectories of other particles (e.g., Özgökmen et al., 2000, 2001; Castellari et al.,
2001; Piterbarg, 2001a; Piterbarg and Özgökmen, 2002). The second approach is based on
the knowledge of the underlying Eulerian � eld, either from high-resolution surface
velocity data (e.g., Shay et al., 2002) and/or ocean general circulation models (OGCMs).
Given the Eulerian velocity � eld, Lagrangian particles can be advected with the � ow (e.g.
Blanke et al., 1999; Dutkiewicz et al., 1993) or methods based on dynamical system theory
can be applied to describe the general Lagrangian � ow structure (e.g., Wiggins, 1992; Poje
and Haller, 1999; Couliette and Wiggins, 2000; Kuznetsov et al., 2002).

Despite the advances in Lagrangian techniques, transport prediction in the ocean is still
problematic. The well-known conceptual reason is that particle trajectories are extremely
sensitive to the details of the underlying Eulerian � ow (e.g., Aref, 1984; Samelson, 1996)
and are highly chaotic. Even small errors in the estimation of ocean currents can drastically
change particle trajectories and greatly reduce Lagrangian predictability.Sources of errors
for the Eulerian � elds produced by prediction models include uncertainties in the forcing
functions, bathymetry, coastline, internal strati� cation and details of model numerics. At a
more fundamental level, ocean general circulation models have a � nite horizontal space
resolution, typically 5–20 km, and subgrid effects are usually modeled by using simple
closure schemes such as Laplacian or biharmonic operators (Chassignet and Garraffo,
2001). However, these closures are simply smoothing operators and fail to capture many
complex oceanic processes at the submeso-scale and small-scale range. An example of
such missing turbulent processes is strong eddies, with vorticity of ;7 3 1024 s21 (or
10 times the Coriolis frequency at midlatitudes) and diameter of 1–3 km, observed using
high-resolution Doppler radar off the Florida coast (Shay et al., 2002; Peters et al., 2002).
Also, most ocean models are subject to the hydrostatic approximation,which fails at space
resolutions of less than several km even if the computations are feasible. In contrast,
oceanic Lagrangian particles presumably feel forces acting at scales of the O (m).
Therefore, truncation of turbulent scales below the typical grid spacing of 5–20 km in
OGCMs is highly likely to impact the accuracy of simulated Lagrangian trajectories. Note
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that similar errors may also arise from other gridded data, such as satellite data or radar data
used for studying transport in coastal environments.

While the inherent dif� culty in Lagrangian prediction is well known, a quantitative
assessment of Lagrangian errors due to uncertainties in the underlying Eulerian velocity
� eld is still lacking. The question of how to quantify Lagrangian errors versus Eulerian
model errors is conceptually relevant as well as important in many practical applications,
and it provides the main motivation for the present work. Here, we focus on a single error
source, i.e. on the ubiquitous smoothing error due to removal of subgrid-scale processes in
an Eulerian � eld. In other words, we assume that the Eulerian model is perfect except for
� nite resolution and smoothing, and we investigate quantitatively the impact of Eulerian
smoothing on the prediction of particle trajectories. Of course, in real applications many
other errors will come into play but at least the present results will provide a lower bound to
Lagrangian uncertainty estimates and it will take into account the effects of subgrid-scale
suppression.

The work is performed following two convergent lines of investigations. A numerical
study is carried out using a reduced-gravity quasi-geostrophic (QG) model. Even though
this model does not contain small-scale motion and nonhydrostatic effects, the � ow � eld is
rich with meso- and sub-mesoscale coherent structures that are driven by the stochastic
western boundary conditions (Mariano et al., 2003). A smoothing Kernel is then applied to
this � ow � eld as an approximation for the loss of small-scale information. Thus, this is a
� rst approach in the context of a simple ocean model and simpli� ed removal of velocity
information, in order to explore the impact on Lagrangian predictability. The fundamental
problem we pose can be further pursued using more comprehensive models and schemes,
in light of the results presented in this study.

The original � ow � eld is considered here as our “true” � ow. Smooth versions of the truth
are also computed and regarded as “model” results. Particle clusters are launched in the
“truth” and in the “model” � ows. The impact of Eulerian smoothing on particle trajectories
is quanti� ed considering primarily the difference between the center of mass positions, r,
of clusters launched in the same positions in the “truth” and in the “model” � ows. This
metric characterizes the average path of the cluster and its sensitivity to smoothing. A
second metric is also introduced to characterize the sensitivity of the spreading within each
cluster, and it is given by the difference between particle scattering, s, in the “true” and
“model” � ows. The two metric results, obtained in two different energetic regimes, provide
an assessment of the impact of smoothing on Lagrangian predictability.

In parallel, we consider recent theoretical results by Piterbarg (2004) obtained in the
framework of an idealized Lagrangian Stochastic Model (LSM) (Piterbarg, 2001a,b). The
LSM allows parameterization of the dynamics of multiple particles in a turbulent � ow
knowing the Eulerian mean � ow U(x) and a restricted number of parameters characterizing
the turbulent � uctuation, i.e. the Eulerian space scale R, the velocity variance su

2 and the
Lagrangian time scale t. In the case of single particles, the LSM reduces to the well-known
Langevin equation (e.g. Risken, 1989), which is widely used to represent particle motion in
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the atmosphere and ocean (e.g. Thomson, 1986; Dutkiewicz et al., 1993; Falco et al.,
2000). The multi-particle behavior is introduced through an appropriate space-correlated
noise (Piterbarg, 2001a,b). This feature is essential in prediction studies like the one
presented here. In Piterbarg (2004) the LSM is used to evaluate the smoothing impact in
terms of r and s as function of the � uctuation parameters. Simple asymptotic formulas are
derived, the validity of which are well supported by the stochastic simulations.

The present study has two objectives.The � rst aim is to get a quantitativemeasure of the
sensitivity of Lagrangian predictability as a function of the degree of smoothing of
Eulerian � elds simulated by the QG model. The second objective is to compare and
validate the LSM results of Piterbarg (2004) using results from QG experiments. While
single-particle models have been tested in many situations, including model results
(Garraffo et al., 2001) and Lagrangian ocean data (Griffa, 1996; Falco et al., 2000; Bauer
et al., 1998, 2002), multi-particle LSMs (e.g. Thomson, 1990; Sawford, 1993; Piterbarg,
2001a,b) are still relatively new and have been only partially tested in an oceanographical
context (LaCasce and Bower, 2000). Validation of the multi-particle LSM (Piterbarg,
2004) with Lagrangian particle results from the Eulerian � elds generated by the QG model
would indicate that the LSM results can be used as a guideline to give estimates of
(smoothing) Lagrangian errors also in the real ocean, thus providing signi� cant advantages
by allowing a direct and simple error estimation in terms of few basic � ow parameters
(e.g., R, su, t).

The paper is organized as follows. In Section 2, the general methodology to compare
“true” and “model” results is outlined, the QG model is described, the background on the
LSM (Piterbarg, 2001a,b) and the theoretical results of Piterbarg (2004) are provided. The
results from the QG experiments are presented in Section 3 and those from LSM are shown
in Section 4. A comparison between LSM and QG results is given in Section 5. A summary
is provided in Section 6 together with remarks on future studies and applications. The
Appendix documents the sensitivity of the metrics to sample size in QG and LSM
experiments.

2. Methodology

a. Notation and metrics

Consider a particle trajectory r(t) as the solution of

rÇ 5 u~t, r!, r~0! 5 r0,

where u(t, r) is the true Eulerian velocity � eld and r0 is the trajectory initial condition.
We assume that u is modeled using a “perfect model” except for � nite resolution. The

model result can then be considered as a smoothed version of u in space and time. Here we
concentrate on the issue of smoothing in space, since space resolution is often the critical
issue in practical applications.The model result is then represented simply as the true � eld
u(t, r) smoothed in space with scale h and is indicated as uh(t, r),

4 [62, 1Journal of Marine Research



uh 5 Kh p u, (1)

where Kh is a smoothing scalar kernel and the star means convolution.
Note that the smoothing procedure (1) is not equivalent to a velocity � eld obtained by

lowering the resolution of a numerical dynamical model. When resolution is lowered in a
dynamical model, the Reynolds number of the solution, and, therefore, its degree of
nonlinearity, changes and other effects rather than simple smoothing can occur (e.g. Siegel
et al., 2001). Since our interest is in taking a � rst step in determining the effects of
uncertainty in the Eulerian � elds, we focus here on the smoothing effects, which are more
straightforward to control as function of the parameter h, rather than considering the more
complex problem of running a model at different resolutions. On the other hand, the
procedure (1) exactly corresponds to considering a “statistical model” (rather than a
dynamical model), i.e. a smoother and interpolator applied to a set of discrete data point.
This is a practical and important problem for transport studies based on velocity � elds
obtained from HF radar measurements or coastal survey data (e.g. Paris et al., 2002).

The trajectories advected by the smoothed model � eld are indicated as rh,

rÇ h 5 uh~t, rh!.

In this study, the following kernel is used:

Kh~r! 5
1

2ph2 exp~2r2/2h2!.

We consider clusters consisting of M particles released randomly within a circle of small
diameter (!R) centered at random locations. The particles are then advected starting from
these initial positions with two � ow � elds, u and uh. We address the question of how
different the particle trajectories become under these two � ow � elds at a later time as a
function of the smoothing parameter h. We consider two different metrics of cluster
differences. The � rst one is the mean square distance, r, between their centers of mass
(CM)

r~t! 5 ~E$~r~t! 2 rh~t!!
2%!1/2, (2)

where E{ } is the expectation,

r~t! 5
1
M O

1

M

rm~t!, rh~t! 5
1
M O

1

M

rh,m~t!,

the sub m indicates the particle number in a cluster. The second metric is the difference
between the scattering radia around the CMs

s~t! 5 S~t! 2 Sh~t!, (3)

where the scattering for the true � ow is de� ned by
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S~t! 5 S 1
M O

1

M

E$urm~t! 2 r~t!u2%D 1/2

and for the model � ow in the same way.
For a � ow u characterized by a typical space scale R, we introduce the predictability

time Tpred de� ned by

r~Tpred! 5 R. (4)

Tpred characterizes the typical time after which particles in the truth and in the model can be
considered independent, i.e. separated by the correlation scale R.

b. Quasi-geostrophic model

A reduced-gravity, quasi-geostrophic model is used to generate the Eulerian � elds.
Using nondimensionalization

c 5 ~T0H
21!c*, ~x, y! 5 Rd~x*, y*!, t 5 f0

21t*,

where c is the streamfunction in the horizontal ( x, y) plane, T0 the net northward transport
across the domain, H the active layer depth, Rd 5 =g9H/f0 the radius of deformation, and
g9 the reduced gravity. Dropping (*), the vorticity transport equations are:

]q

]t
1 aJ~c, ¹2c! 1 b

]c

]x
5 d¹4c, (5)

¹2c 2 c 5 q, (6)

where the nondimensional parameters are de� ned as a [ T0/(HRd
2 f0), b [ bRd/f0 and

d [ n/(Rd
2f0), b is the meridional gradient of the Coriolis frequency, and n is the

horizontal viscosity. The prognostic equation (5) is advanced in time using a predictor-
corrector type leapfrog method (Gazdag, 1976). The Jacobian operator is computed using
the formulation proposed by Arakawa (1966) that conserves kinetic energy and enstrophy,
while accurately maintaining the property J(a, b) 5 2J(b, a). All other differential
operators are approximated by central differences. The diagnostic equation (6) is inverted
using a Fast Fourier Transform solver (Swarztrauber, 1977).

The model is con� gured in a regular rectangular domain. The meridional length is
3000 km, which is adequate to contain several wavelengths of characteristic instabilitiesof
the western boundary current. The zonal length is 1000 km such that the domain is much
wider than the mesoscale eddies. The domain is centered around a reference latitudeof 26°.
The equilibrium layer thickness (H 5 1000 m) and the strati� cation ( g9 5 0.01 m s21)
are such that the Rossby radius of deformation is approximately 52 km, typical of
midlatitude circulation. The viscosity is taken either as n 5 100 m2 s21 (in the higher
energy experiment) or n 5 200 m2 s21 (in the lower energy experiment), which are high
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enough to ensure numerical stability at the selected grid scale, but also small enough to
allow existence of turbulent eddy � elds in the simulation (a @ d). The horizontal grid size
is 10 km, which resolves both the mesoscale eddy scale of Rd 5 52 km, and the viscous
western boundary current scale of 17 km # (n/b)1/3 # 22 km. The model time step of 900 s
is much smaller than the time it takes for the fastest current to cross the grid (;9000 s). The
model is forced by specifying a net transport between the eastern and western boundaries.
The transport is T0 5 30 Sv, which is the average transport of the Florida Current (Leaman
et al., 1989). Periodic boundary conditions are used in the northern and southern
boundaries, and free-slip boundary conditions are applied along the eastern boundary.

The primary novel feature that differentiates this model con� guration from more
conventional applications of similar models (e.g., Özgökmen and Chassignet, 1998;
Berloff and McWilliams, 1999; Özgökmen et al., 2001; Lee, 2001) is the use of stochastic
boundary conditions along the western boundary (Mariano et al., 2003). Unlike a no-slip
boundary condition which is based on laboratory scale � uid dynamics (Batchelor, 1967)
and a free-slip condition which is based on the ad-hoc argument that unknown small-scale
processes would allow western boundary currents to slip smoothly along boundaries, a
stochastic boundary condition is an empirical representation of boundary vorticity based
on Ocean Surface Current Radar (OSCR) measurements along the southeastern Florida
coastline with spatial and temporal resolutions of ;250 m and ; 15 mins, respectively
(Shay et al., 2002; Peters et al., 2002).

More speci� cally, the boundary vorticity ẑ is modeled as

ẑ~y, t! 5 g~y 2 ct!, (7)

where the generating function g is evaluated as the sum of the regressive oscillator and a
white noise process g which represents (simplistically) the ambient, wide-band spectral
energy,

g9n 5 a1g9n21 1 a2g9n22 1 wn

gn 5 g9n 1 gn

where the variances of the driving noise wn and ambient noise gn are both obtained
empirically as 1.64 3 10210 s22, or (0.2f0)2. A sampling interval of cDt (5234 m) is
used for discretization based on the northward advection speed of c 5 0.26 m s21

estimated from the radar observations. For further details of the boundary condition, the
reader is referred to Mariano et al. (2003).

It was found in Mariano et al. (2003) that the interior model � elds with stochastic
boundary conditions display episodic events characterized by energetic meanders, dipoles
and eddies at a broad-band of scales, whereas conventional no-slip and free-slip boundary
conditionsyield quasi-periodic � nite-amplitudemodes with little variability.Underestima-
tion of variability with respect to reality is usually associated with the lack of knowledge in
the forcing functions, and it is a chronic problem even in realistic, state-of-the-art ocean
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models (e.g., Garraffo et al., 2001; McClean et al., 2002). As stochastic boundary
conditions impose high variability and greater range of scales on the interior Eulerian � eld,
this QG setup is the choice to conduct our investigation for the objectives of this study.

Using an approach which is conceptually similar to the classical “twin experiments” in
data assimilation studies, we consider the eddy-rich solutions of the QG model as “true”
solutions, u, while the “model” solutions, uh, are computed by smoothing the original QG
solutions using (1) at each time step, as an approximation of the effect of removing
subgrid-scale processes in models with coarse resolution and/or missing physics. Lagrang-
ian particles are then released in both true and smoothed solutions and advected using a
fourth order Runga-Kutta method and a time step equal to the model time step to minimize
discretization errors due to advection technique. A bilinear interpolation is used to
approximate the velocity � eld at the location of each Lagrangian particle. The real ocean
certainly has a much higher degree of complexity than the QG solutions, which is itself
limited by its � nite resolution and many approximations, but on the other hand the
approach has the great advantage that the truth is exactly known so that the uncertainty can
be quanti� ed using the r and s metrics.

c. Lagrangian stochastic model

In this section, a background on a multi-particle LSM (Piterbarg, 2001a,b) is provided.
The LSM has been used in Piterbarg (2004) to obtain theoretical asymptotic results on
Lagrangian predictability,which are brie� y summarized in the following.

The multi-particle model (Piterbarg, 2001a,b) is based on two postulates:
(1) One particle motion is covered by the well-known Langevin equation (also denoted

as “random � ight” model; Thomson, 1987) characterized by two parameters for each
velocity component: Lagrangian correlation time, t, and velocity variance su

2.
(2) Velocities of any two particles are correlated and this correlation is characterized by

a space correlation radius, R.
By assuming homogeneity of velocity � uctuations, one immediately arrives at the

stochastic differential equations describing motion of any M particles

drm 5 ~U~rm! 1 vm!dt, dvm 5 2~vm/t!dt 1 smjdwj, m 5 1, . . . , M, (8)

where U(r) is the mean � ow, wj, j 5 1, . . . , M are independent two dimensional standard
Brownian motions modeling stochastic forcing, the summation over j is meant, and for 2 3

2 matrices s’s satisfy

skjs lj
T 5 B~~rk 2 rl!/R!,

where B(r) is the space covariance tensor. In other words, for any M particles their
positions and velocities form a classical multi diffusion process in 4M dimensions with
drift explicitly expressed in terms of the mean � ow and t, and a diffusion matrix
completely determined by the covariance tensor B. Thus, particle positions and velocities
in (8) are correlated through the noise terms. In addition we assume that the forcing is
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isotropic and its divergence is zero, and thereby B is completely de� ned by a scalar
covariance B(r/R) (covariance of a streamfunction determining the forcing), where r 5

uru.
The LSM (8) has been used in Piterbarg (2004) to study the behavior of r(t) (2) and s(t)

(3), as metrics of the discrepancy between two stochastic � ows, one of which is the
smoothed version of the other. More exactly, for a � xed value of the smoothing parameter,
h, de� ne a new forcing, wh 5 Khp w, and let rh,m and vh,m be the particles’ positions and
velocities obtained from (8) when w is replaced by wh. In this context, we call the positions
rm and rh,m ‘true’ and ‘model,’ respectively, and h is the ‘model’ resolution limit (loosely
speaking, grid size) while there is no limit for the ‘true’ motion resolution. Thus, r(t) is the
mean square distance between the centers of mass for the ‘real’ and ‘model’ clusters. Some
of the main theoretical results obtained in Piterbarg (2004) are summarized in the
following.

If h ! R, then during the initial stage r(t) grows exponentially

r~t! <
C0h

2

R
~exp~Lt! 2 P~t!!, (9)

where L . 0 is the so-called second Lyapunov moment, P(t) is a second order polynomial
with P(0) 5 1, and C0 5 C0(a) is a dimensionless constant depending on the nonlinearity
parameter

a 5
tsu

R
, (10)

shape of the spatial covariance and type of smoothing kernel. Exact expressions for L in
terms of su, t, and R are given in Piterbarg (2001a). For large t, the following inertial
regime holds true

r~t! < 2Î2su~tt/M!1/2, (11)

regardless of whether h ! R or not.
Asymptotic (9), which describes the case r , R, can be used to determine the

predictability time Tpred, under the same condition h ! R. By neglecting the power terms
in t, one gets

Tpred < 2L21ln
R

h
. (12)

A scale for the scattering difference s(t) can be estimated as

s~t! <
h2su

R2 Î ~M 2 1!tt

M
. (13)
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Notice that, while r is mostly characterized by an exponential growth in time (9), s is
characterized by a t1/2 growth (13). The reason for this difference can be understood in the
following way. By de� nition (3), s is the difference between the truth and model
scatterings. It can be shown that the truth scattering also evolves in two stages, exponential

S~t! , d0exp~Lt!, (14)

where d0 is the initial cluster radius, and inertial

S~t! < 2suÎtt~M 2 1!/M. (15)

Of course, the same asymptotics hold true for the model scattering with replacing L and su

by the corresponding values for the model � ow.
The crucial point is that the two-stage evolution (14, 15) of S and two-stage evolution (9,

11) of r are quite different. The exponential growth stage of the latter is much longer than
that of the former, because r(t) starts from zero while S starts from d0. Thus, the
exponential stage makes the main contribution in the overall behavior for r(t) while
evolution of S is more in� uenced by the inertial stage. As a conclusion, the scattering
difference should be estimated primarily by using the inertial asymptotic (15) for the truth
scattering and the corresponding inertial asymptotic for the model scattering. That results
in the estimate (13) for s.

As a matter of curiosity, note that the truth scattering S goes to the single particle
dispersion (e.g. Zambianchi and Griffa, 1994)

D~t! 5 E$r~t, a!2%1/2 , 2suÎtt (16)

as M ® `, while for the two-particle (M 5 2) relation, (15) turns out to be the inertial
asymptotic for the relative diffusion with a factor 1

2
. Asymptotics (9, 11–16) were carefully

validated by simulations in Piterbarg (2004).

3. Results from QG experiments

Two main experiments are performed using the QG model setup (Table 1). The
experiments differ in the value of viscosity n, while all other parameters are kept identical.
Varying model viscosity is a reasonable approach to change the mean energy levels, size

Table 1. Parameters of and experiments.

Exp n (m2 s21 ) h (km) M L

100 20, 30, 50 10 500
200 20, 30, 50 10 500

Exp su (cm s21 ) t (day) R (km) h (km) M L

35 3.5 75–100 20, 30, 50 1, 10, 50 500
21 4.5 50–75 20, 30, 50 1, 10, 50 500
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and strength of the coherent turbulent structures in the � ow � eld. Both experiments reach a
statistical steady state after approximately two years starting from rest, but they are
integrated for � ve years before the release of synthetic drifters. The � rst experiment,
denoted as , has n 5 100 m2 s21 and is characterized by a basin-averaged kinetic
energy level of EKE ’ 1000 cm2 s22, whereas the second experiment, , has n 5

200 m2 s21 and has relatively lower EKE ’ 400 cm2 s22.
Snapshots of the and streamfunction � elds are shown in Figure 1. Both

� elds are characterized by intense vortices forming along the western boundary and
propagating northward. The spatial scales of the vortices are of the order of ’100 km, but
they differ slightly between the experiments, those in being ’ 25% larger than

Figure 1. Snapshots of streamfunction c � elds for (a) high energy , and (b) low energy
cases (ci: 5 Sv).
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those in . The time-averaged mean � ows over the last three years of the integrations
show a localized region of strong shear close to the western boundary, which is due to
western intensi� cation of the total net induced transport, and it is similar in both
experiments (Fig. 2).

The � ow � elds shown in Figure 1 are considered as the true ocean, u. The Kernel Kh is
applied via (1) at each time step in order to obtain a time series of the model smoothed
� elds uh. Typical results from the applicationof the smoothing operator to the � ow
� eld are illustrated in Figure 3 for smoothing parameters 20 km # h # 600 km. As it can
be seen, the smoothing operator is very effective in removing spatial structures. The effects

Figure 2. Time-averagedmean transport streamfunction� elds c for (a) high energy , and (b)
low energy cases (ci: 5 Sv).
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Figure 3. Impact of smoothing Kernel Kh when applied to the streamfunction � eld (Fig. 1a)
for 20 km # h # 600 km (ci: 5 Sv).
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are already visually evident starting from h 5 20–30 km, they lead to a suppression of the
structures for h . 100 km and to a virtually � at � eld for h 5 600 km. The energy
progressively decreases with increasing h.

The QG experiments (Table 1) are performed considering clusters of M 5 10 particles
(the impact of varying M is considered in Section 4, in the framework of LSM). Three
values of the smoothing parameter h are considered, h 5 20, 30, 50 km. These values are
higher than the “true” model resolution (10 km), and they cover a realistic range going
from values signi� cantly smaller than the eddy size (h 5 20 km) to comparable values
(h 5 50 km). A total of L 5 500 different cluster realizations (corresponding to a total of
5000 particles) are considered for each experiment and for each value of h, and they are
used to estimate the two metrics r (2) and s (3). The cluster realizations are performed
considering � ve different initial conditions for the � ow � eld and releasing 100 clusters in
each of them. The clusters are deployed in the western half of the basin (as the � ow � eld is
weak on the eastern side) but they have a random distribution otherwise. The initial radius
of the clusters is limited to be smaller than the radius of deformation; the maximum radius
is Rd/6 ’ 8 km ! R. The particles are launched in the same positions and at the same time
in the original u and in the smoothed uh. They are advected by the � ow � eld generating
trajectories r and rh, some examples of which are shown in Figure 4 for the original

and for h 5 50 km. As it can be seen, the trajectories tend to be shorter as h
increases, due to decreasing energy.

A quantitative analysis of the trajectories is performed by computing their autocovari-
ance function Ru (Ruu(tlag) 5 ^u(t)u(t 1 tlag)&, Rvv(tlag) 5 ^v(t)v(t 1 tlag)&), which is
used also in Section 4 to set the parameters of the LSM. The effect of smoothing on the
autocovariances is shown in Figure 5 for h 5 0, 20, 50 km in the case of . The
energy decreases strongly with increasing h, dropping by approximately 50% for h 5

50 km. The time scale t shows a less pronounced change. A rough estimate of t as
e-folding time indicates t ’ 3.5 days for h 5 0, 20 km, and t ’ 4.5 days for h 5 50 km.
The asymmetry in the two velocity components is mostly due to the mean � ow. This has
been checked by subtracting the mean � ow along trajectories and computing the autocovari-
ance of the residual � uctuation u9, Ru 9 (Fig. 6a). The � uctuation appears isotropic with the
same time scales t as in Figure 5a. The results for are qualitatively similar, while
the � uctuations are less energetic and have longer time scales. Ru9 for is shown in
Figure 6b, indicating also a more “wavy” behavior, with relatively more pronounced
negative lobes with respect to that from .

The effect of smoothing on the predictability of particle trajectories is quanti� ed by
calculating the two error metrics introduced in Section 2, i.e. the error between centers of
clusters r(t) (2), and the difference in particle scatter around the center of mass, s(t) (3).
An investigation, reported in some details in the Appendix, has been carried out to check
the robustness of the results in terms of convergence at increasing sampling size, L. Results
obtained by varying L between 200 and 500 show that the r statistics are robust, with a
variability of the order of 10–15% at varying L (Fig. 13a, c). The s statistics, on the other
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hand, appear more sensitive to the sampling size and to the speci� c realization considered,
showing a variability up to 100% at varying L (Fig. 13b, d). For this reason, the following
quantitativeanalysis and comparison with LSM results are performed primarily in terms of
r(t), while the s(t) comparison is performed in more qualitative terms.

The r(t) results for and and for h 5 20, 30, 50 km are shown in
Figure 7 and summarized in Table 2. The results are qualitativelysimilar in both cases even
though r(t) reaches slightly higher values in the higher energy case . The change of
r(t) as a function of h illustrates the impact of smoothing on the prediction of CM. Even
for h 5 20 km, when the impact of smoothing on the Eulerian � eld is minute (see
Figs. 1–3), the CM in the smoothed � elds signi� cantly diverges from the true CM after
only a few days. As h increases, the CM error becomes stronger and it starts occurring at

Figure 4. Samples of 15 day-long trajectories from clusters released in (a) the original � ow � eld
, and (b) the � eld smoothed with h 5 50 km.
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Figure 5. Lagrangian autocovariance functions Ru (in cm2 s2 2) calculated without the removal of
the mean � ow as a function of tl a g (in days) from (a) original trajectories from , (b)
trajectories from smoothed � eld with h 5 20 km, and (c) trajectories from smoothed � eld with
h 5 50 km. Solid (dashed) lines show meridional (zonal) velocity component.
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earlier times, with r(t) increasing quickly in time. The r(t) values at 30 days (Table 2)
indicate that the error is almost doubled for h 5 50 km with respect to h 5 20 km. The
values of Tpred (4), which are roughly evaluated by assuming R ’ 75 km for and
R ’ 50 km for , are summarized in Table 3. They indicate Tpred ; 15 and 5 days

Figure 6. Lagrangian autocovariance functions Ru(tl a g ) (in cm2 s2 2) calculated after removing the
mean � ow for (a) , (b) . Solid (dashed) lines show meridional (zonal) velocity
component.
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Figure 7. Center of mass error r(t) for h 5 20 km, h 5 30 km, h 5 50 km, (a) for the high energy
QG experiment , and (b) for the low energy QG experiment .
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for h 5 20 and 50 km, respectively. This suggests that particles, even at high h, are still
correlated during the � rst few days, even though the error is quite high for any practical
application.

The behavior of the scatter error s(t) is shown in Figure 8 and summarized in Table 4.
Despite the lack of robustness of the results (Fig. 13) which does not allow for a close
quantitative assessment, the results appear signi� cantly different from the ones for r(t).
The s(t) values, in fact, are almost an order of magnitude smaller than r(t), and they show
a greater tendency to saturate in time, at least for h 5 20–30 km. The smoothing,
therefore, appears to strongly in� uence the behavior of the CM, while the scatter around it
is only partially affected.

4. Results from LSM experiments

In this section, results from numerical experiments performed using the LSM (8) with
parameters estimated from the QG experiments are presented and compared with the
asymptotics presented in Section 2c.

The experiment parameters are summarized in Table 1. Two main sets of experiments
are considered, denoted as and , with parameter values for t, su

2, R
estimated from the and results, respectively. As for the QG experiments,
three values of h 5 20, 30, 50 km are considered, and L 5 500 cluster realizations are
used to compute statistics. Three cluster sizes of M 5 1, 10, 50 particles are considered, in
order to explore the sensitivity of the results to the number of particles in the cluster. The
initial cluster radius is given by d0 5 8 km. The methodology is the same as for the QG

Table 2. Comparison of center of mass error r(t 5 30 days) from and experiments.

Center of mass
error (km) w/o U with U w/o U with U

r(h 5 20 km;
t 5 30 days) 150 150 160 140 110 120

r(h 5 30 km;
t 5 30 days) 210 240 230 200 175 190

r(h 5 50 km;
t 5 30 days) 280 375 360 270 270 250

Table 3. Comparison of predictabilitytime Tp r e d from , experiments, and theory.

Predictability time
(day) with U Eq. (12) with U Eq. (12)

Tp r e d (h 5 20 km) 17 19 18.9 14 17 14.1
Tp r e d (h 5 30 km) 10 15 13 10 12 7.9
Tp r e d (h 5 50 km) 4 9 5.8 6 7 0

2004] 19Griffa et al.: Predictability of Lagrangian particle trajectories



Figure 8. Scatter error s(t) for h 5 20 km, h 5 30 km, h 5 50 km, (a) for the high energy QG
experiment , and (b) for the low energy QG experiment .
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experiments in Section 3. The true trajectories are computed integrating (8), while the
model trajectories are obtained applying the smoothing kernel Kh on (8). Details on the
numerical methodologyare given in Piterbarg (2004).

The issue of how to compute estimates of t, su
2, R is very important for practical

applicationsin the real ocean, since the applicabilityof LSM for prediction studies depends
on the signi� cance of the parameter estimates. In order to address this point, we have used
simple estimation methods based on information that is available in the real ocean.

The parameters su
2 and t are evaluated from the Lagrangian autocovariance Ru(tlag), as

Ru(0) and as e-folding time scale, respectively, using a simple method commonly used in
oceanography (e.g. Bauer et al., 2002). Historical Lagrangian data are now available in
most of the world oceans, so that a similar approach can be easily persued in real ocean
applications. Notice that the t estimates are expected to be approximate in cases when the
autocovariance is signi� cantly different from exponential (e.g., Griffa, 1996). In real ocean
data, exponential Ru is relatively common in regions away from high shears and coherent
structures (Falco et al., 2000; Bauer et al., 2002), while in the presence of coherent
structures, signi� cant deviations from exponential can occur (Veneziani et al., 2004). In
our QG experiments, the � ow is strongly dominated by coherent vortices and Ru(t)
(Figs. 5–6) is signi� cantly different from exponential. As a consequence, this provides a
good test, probably similar to the most “dif� cult” regions in the ocean. Parameter values
estimated from Figure 6 suggest (Table 1): su 5 35 cm s21 (’30 km day21), t 5

3.5 days for , and su 5 21 cm s21 (’18 km day21), t 5 4.5 days for .
The parameter R is less straightforward to evaluate, especially from Lagrangian data

alone. A rough indication can be obtained considering the ratio su/t, which suggest R ’

100–80 km for the QG experiments, in keeping with the size of the structures shown in
Figure 1. Alternatively, as a � rst guess one can consider the value of the Rossby radius of
deformation, which for the QG runs is of the order of 50 km. As can be seen, there is
uncertainty in the R value. A similar situation can be envisioned for real ocean data, where
satellite data might provide qualitative information on structure size and strati� cation data
can provide Rossby radius estimate. Given the uncertaintyof R, we have decided to test the
sensitivity of the results considering different R values, ranging between 50 and 100 km
(Table 1). In the following, we consider � rst the cases with R 5 75 km for and
with R 5 50 km for (smaller values are chosen for consistent with
Fig. 1). Sensitivity to changes in R values is then discussed.

The shape of the B( x) space autocovariance in (8) is taken as

Table 4. Comparison of scatter error s (t 5 30 days) from and experiments.

Scatter error (km) with U with U

s (h 5 20 km; t 5 30 days) 6 28 6 30
s (h 5 30 km; t 5 30 days) 20 46 30 50
s (h 5 50 km; t 5 30 days) 45 100 40 100
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B~x! , exp~2x2!

in all the experiments presented here. Sensitivity tests have been performed using different
space covariances, e.g. with slower decay B( x) ; (1 1 x2)23/2. It is found that as long as
the values of su, t, and R hold, the quantitative behavior of r and s does not depend on B(x).

For each set of experiments, two different choices of mean � ow (U) have been
considered. The � rst choice is simply zero mean � ow, U(r) 5 0, while the second one
qualitatively mimics the QG mean � ow in Figure 2 and it is given by a meridional linear
shear � ow (Fig. 9) with velocity on the western boundary of U ’ 35 cm s21

(’30 km day21), and U 5 0 on the eastern boundary. The difference between the two
choices will allow us to quantify the impact of the mean � ow on the predictability of
trajectories.

As for the case of QG, a sensitivity study has been carried out to check the robustness
and convergence of the results in terms of r and s (see Appendix). The results are
qualitativelysimilar to those obtained for the QG experiments; r appears stable at changing
sampling size (L varying from 200 to 500) (Fig. 14a), and its standard deviation is of the
order of 10–15% for L 5 500 (Fig. 14c), whereas s(t) is more unstable, in terms of both
convergence at varying L and standard deviation error (Fig. 14b, d).

Results for r(t) over 30 days are shown in Figure 10 and summarized in Table 2 for the
two experiments and , considering both cases with no mean � ow and
with shear � ow, and for cluster size of M 5 10. The behavior of r(t) with no mean � ow is
qualitatively similar for both and (Fig. 10a, b, respectively), and it
shows the typical two-stage evolution depicted by (9) and (11), at least for h 5 20, 30 km.
The exponential stage lasts longer for smaller h, as expected. At a more quantitative level,

shows a more pronounced growth, especially for higher h, reaching signi� cantly
higher values for h 5 50 km at t 5 30 days (see Table 2). Explanation is simple: the
crucial role in the growth rate belongs to the velocity variance, which is higher in the high
energy case. The presence of mean shear does not seem to impact signi� cantly the results
(Fig. 10c, d). The terminal values of r(t) (Table 2) essentially coincide within the expected
sampling error. Hence, the shear � ow adds little uncertainty to the Lagrangian trajectories,
while the velocity � uctuations appear to be primarily responsible for this uncertainty.
Other mean � ow shapes have also been tested, such as a periodic sinusoidal � ow, and
similar results are obtained.

The theoretical estimate of Tpred (12) has been computed and compared with experimen-
tal values (Table 3). Tpred (12) depends on the parameter L, which for the values of su, t

and R in Table 1 is L 5 0.14 and 0.13 day21 for and respectively. The
agreement between the Tpred estimates from (12) and from experiment results (Fig. 10) is
quantitatively good for both and and for h 5 20, 30 km. For h 5

50 km, on the other hand, the theoretical values appear signi� cantly different from the
experimental one. This is not surprising given that (12) is valid for h ! R which is violated
for h 5 50 km.

The sensitivity of the results to the parameter R is illustrated in Table 5. Terminal values
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of r(t) are shown for R 5 75, 100 km for and R 5 50, 75 km for ,
considering h 5 20, 50 km. For both experiments, the r values appear unaffected by the
change in R for h 5 20 km, while the results change signi� cantly for h 5 50 km. r is
higher at smaller R, by a factor of 1.5 or more. This is probably due to the fact that h 5

50 km is approximately of the order of R, so that even a relatively small change in R can
determine a change in the particle regime and, therefore, a de� nite difference in r.

Figure 9. Streamfunction c 5 U[ x 2 ( x2 / 2a)] with U 5 34.7 cm s21 (30 km day21) and a 5
1000 km representing linear shear � ow.
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Regarding the sensitivity to the other parameters, preliminary investigations changing t by
’50% suggest that the results are robust and more insensitive than with respect to R.

Finally, the sensitivity to cluster size M has been investigated, considering r(t) for M 5

1, 50. The results are shown in Figure 11 and Table 6, for both experiments in the shear
� ow case. The results can be directly compared with those in Figure 10 for M 5 10. r(t)

Figure 10. Center of mass error r(t) for h 5 20 km (dashed), h 5 30 km (dotted), h 5 50 km
(solid), (a) for the high energy LSM experiment without mean � ow, (b) for the low
energy LSM experiment without mean � ow, (c) for the high energy LSM experiment

with shear � ow, (d) for the low energy LSM experiment with shear � ow.

Table 5. Sensitivity of center of mass error to selection of R in experiments (with U)

Center of mass error (km) R 5 75 km R 5 100 km R 5 50 km R 5 75 km

r (h 5 20 km; t 5 30 days) 150 140 110 110
r (h 5 50 km; t 5 30 days) 375 200 270 180
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appears signi� cantly higher for M 5 1 than for M 5 10, 50, in qualitativeagreement with
(11). Intuitively, this indicates that the prediction error for a single particle is much greater
than for the center of mass of a cluster. The results do not appear to change signi� cantly
between M 5 10 and M 5 50 over 30 days, even though they do differ for a longer run of
100 days (not shown), with M 5 10 being signi� cantly higher (a factor 1.5) than M 5 50.
The results then appear in qualitative agreement with (11), even though they do not agree
in a quantitative sense. This is probably due to the asymptotic nature of the estimate (11).

The scattering difference, s(t), is shown in Figure 12 and summarized in Table 4 for both
experiments and , in the case of shear � ow. As for QG, the results appear
signi� cantly different from the r results (Fig. 10) in terms of values and, to some extent, in
terms of shape. The s(t) values are signi� cantly smaller than r(t), as shown also by the
terminal values (Table 4), which are approximately 1

3
to 1

5
of the terminal r(t) (Table 2).

Figure 11. Sensitivity of center of mass error r(t) to cluster size M. (a) with M 5 1, (b)
with M 5 1, (c) with M 5 50, (d) with M 5 50.
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This indicates that one can predict the scattering radius of the cluster with higher accuracy
than the center of mass of the cluster.

In summary, the numerical experiments with LSM are in good qualitative agreement
with the theoretical asymptotics derived from the same model. They also indicate that the
� uctuation is the main source of uncertainty.

5. Comparison of LSM and QG experiments

In this section, results from QG experiments (Figs. 7–8) are compared with those from
LSM, focusing for simplicity on the case with shear � ow (Figs. 10c, d–12).

We focus mostly on the r(t) metric which is more robust and has lower errors, therefore,
allowing for a quantitative comparison. The qualitative behavior of the r(t) curves is
similar (Figs. 7, 10), especially for the lower energy experiments and . For
the higher energy case, the initial exponential behavior which is present in is not
quite distinguishable in for h 5 50 km. Terminal values of r(t) for the QG and
LSM experiments (Table 2) show quantitatively similar results (within the estimated
sampling errors of the order of 10–15%) for h 5 20–30 km. For h 5 50 km, the behavior
is different for the higher and lower energy experiments. For lower energy, and

show compatible results, while for higher energy and are
signi� cantly different with overestimating the QG r value of ’30%.

A further comparison has been performed considering the values of Tpred (4) (Table 3).
Again, the agreement appears quantitatively good overall, except for the high energy case
with h 5 50 km. In this case, overestimates Tpred by almost 50% with respect to

.
Regarding the behavior of s(t) (Figs. 8–12), the qualitative behavior of LSM and QG is

similar and in both cases the values appear signi� cantly lower than for r(t). At a
quantitative level, though, the LSM results overestimate the QG results (Table 4) for both
experiments by a factor of 2 for h 5 30, 50 km. For h 5 20 km the discrepancy appears
even higher even though it is dif� cult to quantify it given the high dependency of the
estimates on sampling (Figs. 13–14).

Table 6. Sensitivity of center of mass error to selection of M, the number of drifters in each cluster,
in experiments (with U).

Center of mass
error (km) M 5 1 M 5 10 M 5 50 M 5 1 M 5 10 M 5 50

r (h 5 20 km;
t 5 30 days)

250 160 130 180 120 120

r (h 5 30 km;
t 5 30 days)

350 230 230 260 190 180

r (h 5 50 km;
t 5 30 days)

440 360 370 310 250 250
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In summary, the comparison shows a very good agreement between QG and LSM
results for r(t) indicating that LSM results can indeed be used to provide guidance on
predictability estimates of CM for complex � ow � elds. The agreement is not only
qualitative but also quantitative, except for the case of high energy and h 5 50 km, which
can be due to various reasons. The high energy case might be more dif� cult to simulate in
terms of LSM, as also suggested by the difference in the curve shapes. The initial time
exponential behavior predicted by the theory might not be present in the highly turbulent

Figure 12. Scatter error s(t) for h 5 20 km (dashed),h 5 30 km (dotted),h 5 50 km (solid), (a) for
the high energy LSM experiment with shear � ow, and (b) for the low energy LSM
experiment with shear � ow.
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case. Also, it should be noted that for h 5 50 km, the smoothing is performed at a scale
close to the space scale R, so that the results might be more sensitive to the R parameter
values, as suggested also by the sensitivity results in Section 4.

Regarding s(t), the LSM results provide some qualitative information but they tend to
overestimate signi� cantly the s values, at least for the considered set of parameters. This
might be due to the fact that the spreading of QG trajectories is constrained by the presence
of vortices, which are not present in the LSM parameterization. In LSM, once the particles

Figure 13. Sensitivity of QG results to sampling size, for number of clusters L 5 100, 200, 300,
400, 500 (lines marked with 1, 2, 3, 4 and 5, respectively). (a) Center of mass error r(t) and (b)
scatter error s(t) in for h 5 20 km and h 5 50 km. (c) r(t) and (d) scatter error s(t) in

for h 5 20 km and h 5 50 km.
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have reached a distance R, they move independently, while QG particles tend to be
effectively trapped by the vortices.

We underscore an important role of the spatial correlation in particle motion in the LSM
used. In many previous studies, this correlation was ignored for a good reason: the goal was
just to reconstruct the mean tracer � eld (e.g. Berloff and McWilliams, 2002). For such a
goal the space correlation in Lagrangian motion does not matter. This is not the case in
predictability problems like the one discussed here. On one side, any attempt to use
uncorrelated particles for comparing LSM and QG performance leads to unrealistically
large values of r compared with QG and common sense. On the other side, overestimated
values of R result in large discrepancy between r in QG and LSM due to very small LSM
values of r.

Figure 14. Sensitivity of LSM results to sampling size in for h 5 20 km. (a) Center of
mass error r(t) for L 5 200 (dash dot), 300 (dash), 400 (dot), 500 (solid), (b) scatter error s(t) for
L 5 100, 200, 300, 400, 500, (c) con� dence intervals of r(t) for L 5 500, (d) con� dence
intervals of s(t) for L 5 500.
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6. Summary and concluding remarks

This study is motivated by the effects of the discrepancy in scales between spatial
discretization in ocean circulation models and available velocity data sets, and the forces
acting on Lagrangian particles/drifters, typically 1 m, and their impact on the accuracy of
the Lagrangian motion simulated by these modeled Eulerian � elds. In numerical dynamical
models, the parameterization of turbulent scales smaller than the model grid scale is
typically modeled by Laplacian or other parameterization schemes, which are essentially
smoothing operators. Even though small scales do not carry much energy, they may have
high vorticity, due to high shears induced by wave re� ection as revealed by aerial
photographs and in situ moored current data near the northern California coast (Sheres et
al., 1985), or submesoscale eddies induced by episodic upwelling events revealed by
recent high resolution surface radar observations off the Florida coast (Shay et al., 2002;
Peters et al., 2002), and hence can exert signi� cant impact on the accuracy of individual
Lagrangian trajectories.

In this study, the impact of uncertainty due to smoothing errors in the Eulerian � eld on
the prediction of particle trajectories is investigated. This is a � rst step toward the more
complex problem of actually considering the effects of lowering resolution in a dynamical
model. When changing resolution, the Reynolds number of the solution and, therefore, its
degree of nonlinearity changes and other effects rather than simple smoothing can occur
(e.g. Siegel et al., 2001). The present results, then, should be considered as a � rst
approximation to the problem of changing model resolution. On the other hand, the results
are directly applicable to the case of an Eulerian velocity � eld computed using a “statistical
model” (rather than a dynamical model), i.e. by smoothing and interpolating a set of
discrete data point. This is a practical and important problem, for transport studies based on
velocity � elds obtained from HF radar measurements or coastal survey data (e.g. Paris et
al., 2002).

In the � rst part of the study, prediction uncertainty is quanti� ed using numerical results
from a QG model with stochastic boundary conditions.Clusters of particles are launched in
the QG solution, considered as the “true” ocean, and compared with particles launched in
smoothed versions of the solution, considered as the “model” ocean. This approach is
conceptually similar to the so-called twin experiments in data assimilation, and it has the
advantage that the truth is exactly known so that the uncertainty can be quanti� ed. Two sets
of experiments, characterized by different viscosity and different energy levels, are
considered. For each experiment, various levels of smoothing are considered, character-
ized by the smoothing parameter h.

Sensitivity tests have been performed to test the robustness of the two metrics used to
quantify the Lagrangian prediction error, i.e. the CM error r and the scatter error s. r is
found to be robust and relatively insensitive to sample size, while s appears more sensitive
to sample size and speci� c realizations. As a consequence, most of the quantitative
analyses and comparisons are carried out considering the r metric, while s(t) is used to
provide qualitative information.

The QG experiment results show that the prediction of the cluster CM is highly
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dependent on the Eulerian smoothing.Even when the smoothing scale is relatively small so
that only minute changes in the � ow � eld are induced, (i.e. for h 5 20 km), the CM error
r(t) signi� cantly increases from the � rst few days. At increasing h, r(t) increases faster
and starts at earlier times, reaching values of the order of 300 km after 30 days for h 5

50 km. Similar results are obtained for both experiments, despite the different energy level.
Regarding the spreading error s(t), a signi� cant difference from the r(t) behavior can be

noticed. Values of s(t) remain considerably lower (almost an order of magnitude) than the
r(t) values, reaching maximum values of ’40 km for h 5 50 km. The smoothing,
therefore, appears to have a lower in� uence on the scatter around the CM than the behavior
of the CM itself.

The QG results are then compared with results obtained using an LSM (Piterbarg,
2001a, b), in which the motion of multiple particles in a turbulent � ow is parameterized.
The parameters in the LSM, i.e. the velocity standard deviation su, the Lagrangian time
scale t and the space scale R, are set considering the statistics of the QG solutions. The
issue of how to estimate these parameters is crucial for practical applications in the real
ocean. Here we have deliberately used very simple estimation methods based on informa-
tion that can be realistically available in the real ocean. su and t are directly computed
from Lagrangian autocovariances that can be computed from historical Lagrangian data
sets now available in most of the world oceans. The R parameter is less straightforward to
estimate, and various qualitative methods have been considered; for instance, based on
Lagrangian information as well as on Rossby radius estimates or on visual information
(e.g. from satellite data). These different methods provide results that, even though
qualitatively similar, can easily differ by 25–50%. Given the uncertainty on the R estimate,
a sensitivity study to R values has been performed.

Numerical experiments using the LSM have been performed and compared with the
theoretical asymptotic results of Piterbarg (2004) and used to investigate sensitivity to
various parameters, such as eddy size R, number of particles in the cluster M and mean
� ow U effects. It is found that r(t) decreases with M, as suggested by the theory, even
though the actual decrease rate is only in qualitative agreement with the asymptotic results.
Results appear quite insensitive to the value of R when the smoothing parameter is
relatively small, h 5 20 km. For h 5 50 km, a higher sensitivity is observed, with r

varying by a factor of 1.5 or more. This is probably because h 5 50 km is of the same
order as R itself, so that even small changes can determine signi� cant changes in the
particle regime. A similar sensitivity at h 5 50 km, is observed when comparing
asymptotic and numerical results of the predictability time scale Tpred. Finally, the mean
� ow U is found to be only marginally responsible for Lagrangian uncertainty, which
appears mostly due to the velocity � uctuations.

LSM results are then compared with QG results. Comparison of r(t) results shows a
very good agreement, not only qualitatively but also quantitatively. Results agree, within
the estimated sampling error, except for the case of high energy and h 5 50 km, in which
the LSM results overestimate the QG results by ’30%. Similar results hold also for Tpred.
In summary, then, LSM results appear appropriate to provide guidance on predictability
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estimates of CM in complex � ow � elds, especially when the smoothing scales are smaller
than the eddy size.

Regarding s(t), LSM results show signi� cantly lower values than for r(t), as for QG. At
the quantitative level, though, LSM results appear signi� cantly different from QG results,
overestimating the s values. A possible reason for this difference is that the cluster
spreading in QG is likely to be constrained by the presence of vortices, which are not
present in the LSM.

The existence of quantitativedifferences between QG and LSM results is not surprising,
given that the considered LSM is simple and it cannot reproduce completely the complex
QG dynamics. The LSM, in fact, can be considered as a � rst step toward a more general
hierarchy of stochastic processes (e.g. Griffa, 1996; Berloff and McWilliams, 2002). It
corresponds to a one-dimensional � rst order process in time (Priestley, 1981), and for the
case of a single particle, is characterized by a simple exponential autocovariance. Analysis
of ocean Lagrangian data (e.g. Falco et al., 2000; Bauer et al., 2002) suggests that the
exponential autocovariance is often adequate to describe surface mesoscale turbulence in
the absence of persistent coherent features, but it is inadequate in describing regions
dominated by strong waves or vortices. The QG solutions considered here are character-
ized by persistent vortices, and the corresponding autocovariances are quantitatively
different from exponential, with negative lobes and a “wavy” behavior, that are more
evident in the less energetic case. In a sense, the QG case considered here might be even
more challenging for the LSM model than the real ocean, at least for what concerns surface
� ows away from strong shears.

In summary, the present results indicate that the use of LSM is a promising avenue to
provide guidelines for predictability estimates in realistic ocean situations, at least for what
concerns the position of cluster CM. This is quite advantageoussince the LSM is simple to
implement and it depends only on a few observable parameters that can be estimated from
data. Especially for smoothing scale h smaller than the eddy size, LSM results appear
precise and robust to parameter changes. For cluster spreading, instead, LSM results do not
appear to provide reliable quantitative estimates. They appear to provide qualitative
indications on an order of magnitude of expected s(t).

In the future, LSM results could be further improved by considering more complex
LSM, able to include more aspects of turbulent behavior, such as trapping due to vortices,
Rossby wave effects and wall re� ections, which are present in the QG runs. Some of these
aspects have been recently considered in the framework of single-particle LSM (Berloff
and McWilliams, 2002). In particular, it has been shown (Reynolds, 2002; Veneziani et al.,
2004) that the effects of coherent vortices can be successfully modeled by introducing a
spin term in � rst order models, which appropriately couples the velocity components.
These effects can, in principle, also be included in the multi-particle LSM model
considered here.
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APPENDIX

The robustness of the statistics r(t) (2) and s(t) (3) has been tested in the framework of
QG and LSM results.

For QG, the convergence of the results at increasing sample size has been studied by
considering an increasing number of realizations: L 5 200, 300, 400, 500. The results
are shown in Figure 13 for the two experiments and and for two values of
h, h 5 20, 50 km.

The r results (Fig. 13a, c) show that the statistics are relatively insensitive to L, with a
variability on the order of 10–15%. The s results (Fig. 13b, d), instead, show a much higher
sensitivity to L , and a high variability depending on the speci� c realizations. The s(t)
values appear to vary by ’100% for h 5 20 km and ’50% for h 5 50 km.

Qualitatively similar results have also been obtained for the LSM experiments. Depen-
dence on sample size has been studied as for QG, varying L 5 200, 300, 400, 500. Also,
standard deviations have been evaluated for L 5 500. Typical results are shown in
Figure 14 for the high energy experiment LSM100 and for h 5 20 km.

The r results (Fig. 14a, c) show a con� ned variability at varying L, approximately of the
same order of the standard deviation, i.e. ’10%. The s sensitivity at changing L is
considerably higher, as well as the standard deviation.

In summary, the r statistics appear robust and with relatively small variability, well
suited for quantitative studies and comparisons. The s statistics, on the other hand, have
higher error and higher sensitivity to speci� c realizations. This is especially true for the QG
experiments, where the action of vortex trapping can highly in� uence the statistics.
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Piterbarg,L. I. and T. M. Özgökmen. 2002. A simple predictionalgorithmfor the Lagrangianmotion
in two-dimensional turbulent � ows. SIAM J. Appl. Math., 63, 116–148.

Poje, A. C. and G. Haller. 1999. Geometry of cross-stream mixing in a double-gyre ocean model. J.
Phys. Oceanogr., 29, 1649–1665.

Priestley, M. B. 1981. Spectral Analysis and Time Series, Academic Press, London, 890 pp.
Reynolds, A. M. 2002. On Lagrangian stochastic modelling of material transport in oceanic gyres.

Physica D, 172, 124–138.
Risken, H. 1989. The Fokker-Planck Equation: Methods of Solutions and Applications, Springer-

Verlag, Berlin, 472 pp.
Samelson, R. M. 1996. Chaotic transport by mesoscale motions, in Stochastic Modelling in Physical

Oceanography,R. J. Adler, P. Müller and B. L. Rozovoskii, eds., Birkhäuser, 466 pp.
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