26 research outputs found
Irradiation effects in nanostructured FeCrAl oxide dispersion strengthened steel
Nanostructured ferritic oxide dispersion strengthened (ODS) alloy is an ideal candidate for fission/fusion power plant materials, particularly in the use of a first-wall and blanket structure of a next generation reactor. These steels usually contain a high density of Y-Al-O nanoparticles, high dislocation densities and fine grains. The material contains nanoparticles with an average diameter of 21 nm. Irradiation of these alloys was performed with a dual beam irradiation of 2.5 MeV Fe+/31 dpa and 350 keV He+/18 appm/dpa. Irradiation causes atomic displacements resulting in vacancy and self-interstitial lattice defects and dislocation loops. Additionally to structural changes, the effect of the irradiation generated defects on the mechanical properties of the ODS is investigated by nanoindentation. A clear hardness increase in the irradiated area is observed, which reaches a maximum at a close surface region. This feature is attributed to synergistic effects between the displacement damage and He implantation resulting in He filled vacanciesFerritische Legierungen mit nanodispersen Oxidpartikeln zur HĂ€rtesteigerung sind ein geeignetes Material fĂŒr BehĂ€lter und Ummantelungsstrukturen in modernen Fusions- und Kernspaltungsanlagen. Diese StĂ€hle haben eine hohe Dichte von Y-Al-O Nanoteilchen mit einem mittleren Durchmesser von 21 nm, eine hohe Versetzungsdichte und besitzen eine feine Kornstruktur. Bestrahlungsexperimente wurden mit einer Zwei-Strahl-Ionen-Quelle mit Eisen 2.5 MeV Fe+/31 dpa und Helium 350 keV He+/18 appm/dpa durchgefĂŒhrt. Die Bestrahlung erzeugt atomare Defekte mit Leerstellen und Zwischengitterdefekten sowie Versetzungsschleifen. ZusĂ€tzlich zu den mikro-strukturellen Modifikationen wurde die Ănderung der mechanischen Eigenschaften mit der Bestrahlung untersucht. Insbesondere im oberflĂ€chennahen Bereich fĂŒhrt die Ionenbestrahlung zu einer klaren HĂ€rtesteigerung. Dieses Verhalten wird mit einem synergetischen Modell zur Erzeugung atomarer Strahlendefekte und der Bildung von mit Helium gefĂŒllten Leerstellen diskutiert
Ferromagnetismus in mit Fe implantierten GaN und TiO2
In the present study it was tried to create a diluted magnetic semiconductor on the basis of GaN and TiO2 by means of ion beam implantation. In most cases, by characterization of structural and magnetic properties, it was possible to prove that the ferromagnetic state is related to either spinodal decomposition or secondary phase formation. In case of Fe implanted GaN spinodal decomposition, epitaxially oriented alpha-Fe or epsilon-Fe3N nanocrystals
were found to be responsible for the ferromagnetic behavior. In addition, the formation of gamma-Fe clusters was observed. Similarly, in TiO2 the ferromagnetism is related to the formation of epitaxially oriented alpha-Fe clusters. Dependent on the process parameters
during annealing experiments several various secondary phases were formed. A critical examination of the references in literature points out the significance of usage of sensitive and complementary probe techniques (like CEMS, SQUID, XRD, EXAFS), in order to be able to discuss the origin of ferromagnetism in the field of diluted magnetic semiconductors in a proper way.In der vorliegenden Arbeit wurde versucht, mittels Ionenimplantation verdĂŒnnte magnetische Halbleiter auf der Basis von GaN und TiO2 herzustellen. In den meisten FĂ€llen konnte anhand von Charakterisierungen der strukturellen und magnetischen Eigenschaf-
ten nachgewiesen werden, dass der ferromagnetische Zustand auf das Vorliegen von entweder spinodaler Entmischung oder kristalliner Ausscheidungen zurĂŒckgefĂŒhrt werden kann.
Im Fall von Fe-implantiertem GaN konnten spinodale Entmischung, epitaktisch ausgerichtete alpha-Fe- oder epsilon-Fe3N-Nanokristallite fĂŒr den Ferromagnetismus verantwortlich gemacht
werden. Daneben wird die Bildung von gamma-Fe beobachtet. Bei TiO2 ist Ferromagnetismus ebenfalls auf die Ausscheidung von epitaktisch orientierten alpha-Fe-Clustern zurĂŒckzufĂŒhren.
In AbhÀngigkeit von den Prozessparametern bei Temperungsexperimenten bildete sich eine Reihe unterschiedlicher SekundÀrphasen. Eine kritische Auseinandersetzung mit den
Literaturangaben zeigt die Wichtigkeit des Einsatzes sensitiver, sich ergĂ€nzender Messmethoden (wie CEMS, SQUID, XRD, EXAFS), um die Ursache des Ferromagnetismus auf dem Gebiet der verdĂŒnnten magnetischen Halbleitern zu finden
Origin of magnetic moments in defective TiO2 single crystals
In this paper we show that ferromagnetism can be induced in pure TiO2 single
crystals by oxygen ion irradiation. By combining x-ray diffraction,
Raman-scattering, and electron spin resonance spectroscopy, a defect complex,
\emph{i.e.} Ti ions on the substitutional sites accompanied by oxygen
vacancies, has been identified in irradiated TiO2. This kind of defect complex
results in a local (TiO) stretching Raman mode. We elucidate that
Ti ions with one unpaired 3d electron provide the local magnetic
moments.Comment: 4 pages, 4 figures, to be published at Phys. Rev.
Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic and magneto-transport properties
In this paper we show that spinel ferrite nanocrystals (NiFe2O4, and CoFe2O4)
can be texturally embedded inside a ZnO matrix by ion implantation and
post-annealing. The two kinds of ferrites show different magnetic properties,
e.g. coercivity and magnetization. Anomalous Hall effect and positive
magnetoresistance have been observed. Our study suggests a
ferrimagnet/semiconductor hybrid system for potential applications in
magneto-electronics. This hybrid system can be tuned by selecting different
transition metal ions (from Mn to Zn) to obtain various magnetic and electronic
properties.Comment: 12 pages, 14 figs. accepted for publication at PR
Fe-implanted ZnO: Magnetic precipitates versus dilution
Nowadays ferromagnetism is often found in potential diluted magnetic
semiconductor systems. However, many authors argue that the observed
ferromagnetism stems from ferromagnetic precipitates or spinodal decomposition
rather than from carrier mediated magnetic impurities, as required for a
diluted magnetic semiconductor. In the present paper we answer this question
for Fe-implanted ZnO single crystals comprehensively. Different implantation
fluences and temperatures and post-implantation annealing temperatures have
been chosen in order to evaluate the structural and magnetic properties over a
wide range of parameters. Three different regimes with respect to the Fe
concentration and the process temperature are found: 1) Disperse Fe and
Fe at low Fe concentrations and low processing temperatures, 2)
FeZnO at very high processing temperatures and 3) an intermediate
regime with a co-existence of metallic Fe (Fe) and ionic Fe (Fe and
Fe). Ferromagnetism is only observed in the latter two cases, where
inverted ZnFeO and -Fe nanocrystals are the origin of the
observed ferromagnetic behavior, respectively. The ionic Fe in the last case
could contribute to a carrier mediated coupling. However, their separation is
too large to couple ferromagnetically due to the lack of p-type carrier. For
comparison investigations of Fe-implanted epitaxial ZnO thin films are
presented.Comment: 14 pages, 17 figure
Ferromagnetic transition metal implanted ZnO: a diluted magnetic semiconductor?
Recently theoretical works predict that some semiconductors (e.g. ZnO) doped
with magnetic ions are diluted magnetic semiconductors (DMS). In DMS magnetic
ions substitute cation sites of the host semiconductor and are coupled by free
carriers resulting in ferromagnetism. One of the main obstacles in creating DMS
materials is the formation of secondary phases because of the solid-solubility
limit of magnetic ions in semiconductor host. In our study transition metal
ions were implanted into ZnO single crystals with the peak concentrations of
0.5-10 at.%. We established a correlation between structural and magnetic
properties. By synchrotron radiation X-ray diffraction (XRD) secondary phases
(Fe, Ni, Co and ferrite nanocrystals) were observed and have been identified as
the source for ferromagnetism. Due to their different crystallographic
orientation with respect to the host crystal these nanocrystals in some cases
are very difficult to be detected by a simple Bragg-Brentano scan. This results
in the pitfall of using XRD to exclude secondary phase formation in DMS
materials. For comparison, the solubility of Co diluted in ZnO films ranges
between 10 and 40 at.% using different growth conditions pulsed laser
deposition. Such diluted, Co-doped ZnO films show paramagnetic behaviour.
However, only the magnetoresistance of Co-doped ZnO films reveals possible s-d
exchange interaction as compared to Co-implanted ZnO single crystals.Comment: 27 pages, 8 figure
Crystallographically oriented magnetic ZnFe2O4 nanoparticles synthesized by Fe implantation into ZnO
In this paper, a correlation between structural and magnetic properties of Fe
implanted ZnO is presented. High fluence Fe^+ implantation into ZnO leads to
the formation of superparamagnetic alpha-Fe nanoparticles. High vacuum
annealing at 823 K results in the growth of alpha-Fe particles, but the
annealing at 1073 K oxidized the majority of the Fe nanoparticles. After a long
term annealing at 1073 K, crystallographically oriented ZnFe2O4 nanoparticles
were formed inside ZnO with the orientation relationship of
ZnFe2O4(111)[110]//ZnO(0001)[1120]. These ZnFe2O4 nanoparticles show a
hysteretic behavior upon magnetization reversal at 5 K.Comment: 21 pages, 7 figures, accepted by J. Phys. D: Appl. Phy
Room temperature ferromagnetism in carbon-implanted ZnO
Unexpected ferromagnetism has been observed in carbon doped ZnO films grown
by pulsed laser deposition [Phys. Rev. Lett. 99, 127201 (2007)]. In this
letter, we introduce carbon into ZnO films by ion implantation. Room
temperature ferromagnetism has been observed. Our analysis demonstrates that
(1) C-doped ferromagnetic ZnO can be achieved by an alternative method, i.e.
ion implantation, and (2) the chemical involvement of carbon in the
ferromagnetism is indirectly proven.Comment: 13 pages, 3 figs, accepted for publication at Appl. Phys. Let