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Irradiation effects in nanostructured FeCrAl oxide 
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Abstract

Nanostructured ferritic oxide dispersion strengthened 

(ODS) alloy is an ideal candidate for fi ssion/fusion pow-

er plant materials, particularly in the use of a fi rst-wall 

and blanket structure of a next generation reactor. These 

steels usually contain a high density of Y-Al-O nanoparti-

cles, high dislocation densities and fi ne grains. The mate-

rial contains nanoparticles with an average diameter of 

21 nm. Irradiation of these alloys was performed with a 

dual beam irradiation of 2.5 MeV Fe+/31 dpa and 350 keV 

He+/18 appm/dpa. Irradiation causes atomic displace-

ments resulting in vacancy and self-interstitial lattice 

defects and dislocation loops. Additionally to structural 

changes, the effect of the irradiation generated defects 

on the mechanical properties of the ODS is investigated 

by nanoindentation. A clear hardness increase in the ir-

radiated area is observed, which reaches a maximum at 

a close surface region. This feature is attributed to syner-

gistic effects between the displacement damage and He 

implantation resulting in He fi lled vacancies. 

Zusammenfassung

Ferritische Legierungen mit nanodispersen Oxidparti-

keln zur Härtesteigerung sind ein geeignetes Material 

für Behälter und Ummantelungsstrukturen in moder-

nen Fusions- und Kernspaltungsanlagen. Diese Stähle 

haben eine hohe Dichte von Y-Al-O Nanoteilchen mit 

einem mittleren Durchmesser von 21 nm, eine hohe 

Versetzungsdichte und besitzen eine feine Kornstruk-

tur. Bestrahlungsexperimente wurden mit einer Zwei-

Strahl-Ionen-Quelle mit Eisen 2.5 MeV Fe+/31 dpa und 

Helium 350 keV He+/18 appm/dpa durchgeführt. Die 

Bestrahlung erzeugt atomare Defekte mit Leerstel-

len und Zwischengitterdefekten sowie Versetzungs-

schleifen. Zusätzlich zu den mikro-strukturellen Mo-

difi kationen wurde die Änderung der mechanischen 

Eigenschaften mit der Bestrahlung untersucht. Insbe-

sondere im oberfl ächennahen Bereich führt die Ionen-

bestrahlung zu einer klaren Härtesteigerung. Dieses 

Verhalten wird mit einem synergetischen Modell zur 

Erzeugung atomarer Strahlendefekte und der Bildung 

von mit Helium gefüllten Leerstellen diskutiert.

1  Introduction

Advanced fi ssion and fusion reactor service condi-

tions are characterized by a combination of high tem-

peratures and intense neutron radiation fi elds (Fig. 1). 

The study of effects of a combination of high levels of 

He and irradiation damage on the mechanical prop-

erties of reactor steels is a very important issue in the 

development of new reactor types [Zinkle et al. 2000, 

Yamamoto et al. 2007]. The production of 10-15 app-

mHe/dpa in fusion reactors is about one order of mag-

nitude higher than in the case of fi ssion [Baluc 2006]. 

Atoms will be displaced from their lattice position cre-

ating large excess concentrations of vacancy and self-

interstitial atom defects, typically characterized by 

the neutron dose unit of displacement per atom (dpa). 

Helium is a transmutation product gas in nuclear reac-

VHTR: Very high temperature reactor; SCWR: Super critical water reactor; 

GFR: Gas fast reactor; LFR: Lead fast reactor; SFR: Sodium fast reactor; 

MSR: Molten salt reactor

Fig. 1: Generation IV nuclear reactor concepts with their operation 
temperatures and neutron exposure. Several suitable materials for 
operation conditions are indicated. (S. J. Zinkle, OECD-NEA Workshop 
on Structural Materials for Innovative Nuclear Energy Systems, Karlsruhe, 
Germany, June 2001)
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tors, the concentration of which is measured in atom 

parts per million (appm). Helium is insoluble in steel 

and precipitates in gas bubbles, that are formation 

sites for both growing voids and grain boundary creep 

activities. Nuclear transmutations also change the el-

emental alloy composition and produce radionuclides 

with a wide spectrum of decay times, but will not be 

considered in this paper. 

Advanced reactors do not demand only novel fuel 

forms. They also call for novel structural materials. 

Standard strategies for toughening materials for high-

temperature applications appear unlikely to offer much 

help for use in nuclear reactors, where intense radiation 

can make materials unstable [Duffy 2010, Guerin et 

al. 2009, Baluc 2006]. PM 2000 is an iron-based oxide 

dispersion strengthened steel alloy, which possesses 

excellent high-temperature strength and is a promis-

ing candidate for high-temperature structural material 

applications, such as advanced fi ssion/fusion power 

plants or hydrogen combustion energy cells. 

The effect of irradiation on ODS alloys has been an 

important issue and stimulated worldwide investiga-

tions in the last decade [Odette et al. 2008, Pouchon et 

al. 2010, Kishimoto et al. 2007,Yamamoto et al. 2007]. 

Displacement damage drives complex microstructural 

and microchemical evolutions and undergoes interac-

tions with helium. In order to understand the irradia-

tion behavior of PM2000, high resolution transmission 

electron microscopy (HRTEM) investigations and na-

noindentation experiments are performed. These are 

suitable methods to fi nd potential structural changes, 

which can be compared with measurements of the me-

chanical properties in a thin surface layer damaged by 

irradiation. 

2  Experimental procedures

2.1  Materials production and processing

Oxide dispersion strengthened alloys such as PM2000, 

MA956 and ODS Fe3Al are Fe-based alumina forming al-

loys with the additions of mainly Y2O3 oxide (~0.5wt %) 

for mechanical strengthening. The alloys also contain 

Ti (~0.5wt %) which is added as a sink for impurities 

such as S, N and O. The sample studied was a hot-rolled 

sheet of PM2000 which is manufactured using the me-

chanical alloying process in a high-energy ball mill in 

which powders of the 73.5 wt% Fe master alloy plus 20 

wt% Cr, 5.5 wt% Al, 0.5 wt% Ti, and 0.5 wt% Y2O3 are 

mixed together (Fig. 2). A process control agent (usually 

an organic agent) is added to the powder mixture dur-

ing milling to reduce cold welding between particles, 

especially when the powder mix involves a substantial 

fraction of a ductile component. The next step is con-

Fig. 2: Composition, mechanical alloying principle and processing of ODS PM2000 steel. 
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solidation by extrusion or by means of hot compaction 

and then the extruded alloy is hot or cold rolled. After 

that, the consolidated ODS steel was annealed at ~1050 

°C for 1 hour for thermal stabilization. 

PM2000 ODS alloys contain nano-scale, uniformly 

dispersed Y–Al oxide particles in a Fe–Cr–Al matrix, 

which inhibit dislocation movement and therefore re-

tard the recovery and re-crystallization process, where 

re-crystallization occurs at exceptionally high tempera-

tures, in the order of 0.9 of the melting temperature. 

Although the high aluminum content can be disad-

vantageous because of the high activation potential for 

fusion applications, the formation of the Al2O3 layer on 

the surface provides superior oxidation and corrosion 

resistance. 

2.2  Irradiation

Since direct neutron irradiation experiments are limit-

ed in terms of a variation of parameters such as fl uence 

and temperature and are also very time consuming and 

produce highly reactive material, ion irradiation is of-

ten performed as a substitute for the true reactor con-

ditions. Our ODS samples were irradiated in the dual 

beam implantation chamber (DB) at FZD Rossendorf, 

Center for Application of Ion Beams in Materials Re-

search [Kaschny et al. 2005]. The facility allows mate-

rials to be implanted using two ion beams simultane-

ously. The sample is located at the 45° cross point of two 

beam lines, one from a single-ended HVEE 500 kV ion 

implanter and the other from a HVEE 3MV Tandetron 

accelerator. Each beam line is equipped with independ-

ent ion fl uence and current control. The special design 

of the beam sweeping system enables both ion beams 

to scan the target surface simultaneously in synchro-

nous mode, i.e. both ion spots are kept at coincident 

positions over the target. The self-ion irradiation with 

Fe+ ions for steel, was selected to simulate the effects of 

a neuron induced collision cascade. The Fe+ ion beam 

causes the radiation damage and the He+ ion beam 

provides the source of He to model the agglomeration 

similar to that produced by the nuclear reaction. The 

Fe+ ions in the dual-beam facility were implanted with 

an energy of 2.5 MeV and 31 dpa in the ODS PM2000 

sample. The energy of the He+ ions in the dual-beam 

irradiation is adapted in such a way that the maximum 

of the implanted He+ ions appears at the same depth as 

that of the Fe+ ions. Thus, the energy of the He+ ions was 

set at 350 keV. With a fl uence of 1.4x1015 ions/cm2 the 

He+/dpa ratio is 18 appm/dpa. 

Extended SRIM calculations [Kögler et al. 2009] of the 

damage profi le are given in Fig. 3 and show a maximum 

of the implanted Fe+ ions at about 600 nm. The full cas-

cade of radiation damage was calculated and displayed 

in Fig. 3 with the produced excess interstitials and ex-

cess vacancies. The area of excess vacancies is spatially 

well separated from the excess interstitials and shows 

different features. The vacancy-rich region is fairly fl at 

and located close to the surface ranging from up to 500 

nm. The excess interstitials appear at larger depth with 

a maximum around 700 nm. 

2.3  Nanoindentation

Ion implantation as a convenient way for introducing 

irradiation damage has a limited damage depth, which 

is about 850 nm maximum in our experiments. Na-

noindentation is a suitable method to determine the 

mechanical properties of such a thin irradiated surface 

layer. During a typical nanoindentation test, load and 

displacement are recorded as the indenter tip is pressed 

into the sample surface with a prescribed loading and 

unloading profi le. The load-displacement curve pro-

vides much more information than a microscopy im-

age of the impression, since it includes plastic and 

elastic features of the material. The main reason for the 

application of nanoindentation is its relative experi-

mental simplicity with minimal specimen preparation 

required. In contrast to other established mechanical 

tests, e. g. uniaxial tension, the goal of indentation ex-

periments is to probe small volumes and to perform in-

dentations on submicron scales [Gouldstone et al. 2007, 

Wolf et al. 2003, Richter et al. 2008, Chen et al. 2010]. 

Additionally, the technique has a great importance for 

Fig. 3: Calculated depth profi le for implantation of 2.5 MeV Fe+ ions into 

ODS steel together with the corresponding distributions of excess vacan-

cies VEx and excess interstitials IEx. The ion beam hits the sample surface 

under an angle of 22.5°. 
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experimental studies of fundamental material physics 

on the basis of high resolution load-displacement data.

Most nanoindentation experiments were performed 

using the electrostatic transducer of the Hysitron tri-

boscope in the UBI 1 at the Technical University of Ap-

plied Sciences Wildau. The maximum load applied is 

10 mN. Most indents were performed at lower load to 

study the near surface area in more detail and to avoid 

effects from the bulk non-irradiated material. In order 

to get a survey about the hardness profi le with larger 

depth, indentation with the UNAT-M of the company 

ASMEC was performed up to 100 mN. 

The most common use of nanoindentation is for the 

measurements of hardness and indentation modulus. 

Hardness H represents the mean contact pressure un-

der load and is obtained by the applied load F divided 

by the projected area Ac of the indenter tip at the cor-

responding contact depth hc. The indentation modu-

lus E is derived from the slope of the load-displacement 

curve upon unloading as the material recovers elastical-

ly [Oliver et al. 1992, Wolf et al. 2003]. All load-displace-

ment curves were analyzed according to the standard 

Oliver-Pharr method [Oliver et al. 1992]. Investigations 

are performed with a blunted 90° diamond cube corner 

tip. The calibration of the tip to determine the depth 

dependent area function Ac(hc) was obtained with the 

standard curve-fi tting method using fused quartz, with 

its known reduced modulus as the reference material. 

Additionally, calibration with a sharp silicon grating 

was performed [Richter et al. 2006]. 

3  Results

Typical microstructures of as-received PM2000 ODS 

steel are shown in Fig. 4a. A few dislocation lines are 

clearly visible. The fi ne-scale Y-Al-O particles tend to pin 

dislocations (Zener pining), which revealed evidence of 

particle–subgrain boundary interactions in the micro-

structure. The high temperature strength of the ODS 

alloys emanates from the inhibition of dislocation mo-

tion in the metal matrix by the oxide dispersion retard-

ing the recovery and re-crystallization processes. This 

increases the creep resistance of the alloys. 

Fig. 4b shows the microstructures of an as-received 

PM2000 steel after dual beam irradiation. Transmission 

electron microscopy (TEM) observations have been per-

formed at the cross section area on the top thin layer 

(about 850 nm depth), where irradiation damage was 

generated. A large number of bright spots was detect-

ed by over and under focus of the electron beam. The 

features marked by red circles on the TEM image (Fig. 

4b) might represent helium fi lled vacancies, which are 

non-uniformly distributed in the microstructure. The 

size of these helium cavities is about 6 nm in diameter 

and they tend to form a vacancy band. In general, he-

lium bubbles act as formation sites for growing voids 

and can also lead to highly brittle intergranular fast 

fracture as helium formed on grain boundaries [Odette 

et al. 2008]. 

Fig. 4: TEM micrographs of ODS PM2000 steel with (a) Y-Al-O particles 

pinning dislocations in the as-received state and (b) cross section micro-

graph after dual beam irradiation with bright spots indicating a band of 

He fi lled vacancies marked by red circles. 

a)

b)
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Depth dependent hardness measurements of the 

ODS as-received samples are displayed in Fig. 5. These 

nanoindentation measurements confi rm the hard-

ness increase in the thin irradiated surface layer. Meas-

urements with large applied loads up to 100 mN were 

performed, which result in a penetration range that 

corresponds to the peak in the calculated average dis-

placement damage (see Fig. 3). At about 6oo nm depth, 

the hardness of the dual beam irradiated ODS alloy has 

the same value as that of the non-irradiated state. The 

measured hardness in this region was dominated by 

the large volume of softer non-irradiated material be-

yond the implanted range. There is pronounced pile-up 

around the nanoindents, but signifi cant cracking could 

not be observed. The hardness close to the surface at 

100 nm displacement is about 0.7 GPa larger in the ir-

radiated region compared to that in the non-irradiated 

sample. The hardness decreases gradually with increas-

ing displacement and fi nally approaches the hardness 

value of the non-irradiated bulk state. 

Since hardness values at very shallow penetration 

depth cannot be obtained with high accuracy at large 

applied loads, measurements have been performed 

up to a depth of 250 nm with an applied maximum 

load of 5 mN. The results for ODS are shown in the 

insert of Fig. 5. For the non-irradiated ODS sample, 

the hardness decreases with increasing penetration 

depth from 5.15 GPa in the near surface region to an 

almost constant value of 4.2 GPa at about 250 nm in 

the bulk material. This hardness change is attributed 

to the well-known indentation size effect (ISE) [Nix et 

al. 1998, Wolf et al. 2003], which is also discussed in 

other nanoindentation studies of ion irradiated steels 

[Hosemann et al. 2008, Heintze et al. 2009, Pouchon 

et al. 2010]. 

The depth dependent hardness profi le for the irra-

diated ODS sample is signifi cantly different from that 

of the non-irradiated one and refl ects the irradiation 

induced hardness changes in a thin surface layer. It 

is clearly seen that the dual beam irradiation causes a 

drastic increase of the hardness in comparison to that 

of the non-irradiated ODS sample. The ISE effect would 

not be strong enough to account for that hardness in-

crease close to the sample surface. Thus, the dual beam 

irradiation is the main factor to generate such a typi-

cal depth dependent hardness profi le. There is a clear 

hardness maximum of 6.3 GPa at about 50 nm with a 

steady decrease to a close proximity of the hardness of 

the non-irradiated ODS sample. The hardness increase 

in the irradiated sample is with 1.25 GPa largest at the 

maximum hardness, which means 22% relative to the 

hardness in the non-irradiated ODS steel. For larger in-

dentation depth, the hardness of the irradiated sam-

ple approaches that of the non-irradiated ODS steel. 

Although keeping in mind the 10 % Bückle rule [Bück-

le 1973], the measured hardness maximum is closer to 

the surface than expected from the maximum of the 

damage profi le at 600 nm calculated by SRIM (Fig. 3). 

It could indicate that the hardness of the ODS mate-

rial is not affected by the dual beam irradiation in the 

region where the most displacements per atom would 

be expected. However, the corresponding distribu-

tions of excess vacancy VEx and excess interstitial IEx 

could support an interpretation. The vacancy profi le 

is located in a near surface region and is more or less 

fl at up to a depth of 500 nm, whereas the maximum 

of the interstitials is at 700 nm. Dislocation loops may 

mainly form in the region of interstitials and cause a 

hardness increase beyond the maximum of the aver-

age damage profi le of Fe+ ions. Moreover, it is expect-

ed that the He+ ions are very mobile in the irradiated 

iron matrix. They will not stay at the depth of their 

maximum defect deposition, but move to the vacan-

cies where they accumulate and could form He bub-

bles. Therefore the number of defects in this region is 

increased. The dislocation loops as well as the He bub-

bles act as obstacles for the dislocation glide. Hence, 

the observed hardness maximum in a close surface 

region could be the result of additional formation of 

He cavities. Further experiments are in preparation to 

verify this interpretation.

Fig. 5: Depth dependent hardness of ODS in the as-received state 

(  non-irradiated) and after dual-beam irradiation ( ) with 2,5 MeV 

Fe+ ions and 18 appm/dpa He+. The insert displays the depth dependent 

hardness for smaller penetration values for 5 mN maximum load.
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4  Conclusions

Based on this study on irradiation effects on mechani-

cal properties in nanodispersed ODS steels the follow-

ing conclusions have been reached.

 Fe+/He+ dual beam ion irradiation method is one of 

the most suitable techniques to simulate real fusion 

environmental conditions and to study basic syner-

gistic effects between the displacement damage and 

He implantation in ODS alloys. 

 Nanoindentation is a useful tool to measure me-

chanical property changes in the damage layer of 

less than 1 μm in ion irradiated nanodispersed ODS 

steels.  

 Dual beam irradiation results in all PM2000 ODS sam-

ples in a hardening effect. For irradiated ODS steels, 

a distinct hardness maximum close to the surface is 

observed. This is in contrast to the depth, where the 

maximum average displacements per atom predicted 

by model calculations is expected. The irradiation 

induced hardness in the maximum was increased by 

22 % related to the non-irradiated ODS specimen. 

 The full cascade of radiation damage was simulated 

by extended binary collision models. The area of 

excess vacancies is spatially well separated from the 

excess interstitials and shows different features. The 

shallow vacancy band close to the surface allows the 

accumulation of He+ ions in the vacancies, thus for-

ming fi ne He fi lled cavities. This model supports qua-

litatively the observed depth dependent hardening 

profi le. 

 Fine He cavities could be observed as bright spots of a 

few nanometers in TEM images of the irradiated ODS 

samples. They are not homogeneously distributed 

but form a band close to the sample surface. This sup-

ports the mechanism of He fi lled vacancies.

 These investigations help to understand the mi-

crostructural changes in PM 2000 Fe-based ODS al-

loys, which are considered as a prospective structural 

materials for high temperature gas cooled nuclear re-

actors. 

 Further investigations are necessary to understand 

the role of the high dislocation density and the na-

noparticles and their interaction with the irradiation 

produced defects. 
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