10 research outputs found

    An unusually large gaseous transit in a debris disc

    Get PDF
    We present the detection of an unusually large transient gas absorption in several ionized species in the debris disc star HD 37306 using high-resolution optical spectra. We have been analysing a large sample of debris discs searching for circumstellar gas absorptions aiming to determine the frequency of gas in debris discs. HD 37306 stood out showing remarkably broad absorptions superimposed on to several photospheric Ca II, Fe II, and Ti II lines. The observed absorptions, unlike typical exocometary transits, lasted for at least eight days. Here, we analyse simultaneous spectroscopic and photometric data of the event and evaluate different scenarios that might explain the observed features. We conclude that the most likely scenario might be an exocometary break-up releasing a significant amount of gas close to the star, producing an occulting `ring'/`torus' shape

    APPleSOSS: A Producer of ProfiLEs for SOSS. Application to the NIRISS SOSS Mode

    Full text link
    The SOSS mode of the NIRISS instrument is poised to be one of the workhorse modes for exoplanet atmosphere observations with the newly launched James Webb Space Telescope. One of the challenges of the SOSS mode, however, is the physical overlap of the first two diffraction orders of the G700XD grism on the detector. Recently, the ATOCA algorithm was developed and implemented as an option in the official JWST pipeline, as a method to extract SOSS spectra by decontaminating the detector -- that is, separating the first and second orders. Here, we present APPleSOSS (A Producer of ProfiLEs for SOSS), which generates the spatial profiles for each diffraction order upon which ATOCA relies. We validate APPleSOSS using simulated SOSS time series observations of WASP-52b, and compare it to ATOCA extractions using two other spatial profiles (a best and worst case scenario on-sky), as well as a simple box extraction performed without taking into account the order contamination. We demonstrate that APPleSOSS traces retain a high degree of fidelity to the true underlying spatial profiles, and therefore yield accurate extracted spectra. We further confirm that the effects of the order contamination for relative measurements (e.g., exoplanet transmission or emission observations) is small -- the transmission spectrum obtained from each of our four tests, including the contaminated box extraction, deviates by \lesssim0.1σ\sigma from the atmosphere model input into our noiseless simulations. We further confirm via a retrieval analysis that the atmosphere parameters (metallicity and C/O) obtained from each transmission spectrum are consistent at the 1σ\sigma level with the true underlying values.Comment: 12 pages, 9 figures. Submitted to PAS

    MASCARA-4 b/bRing-1 b: A retrograde hot Jupiter around a bright A-type star

    Get PDF
    Context. The Multi-site All-Sky CAmeRA (MASCARA) and bRing are both photometric ground-based instruments with multiple stations that rely on interline charge-coupled devices with wide-field lenses to monitor bright stars in the local sky for variability. MASCARA has already discovered several planets in the northern sky, which are among the brightest known transiting hot Jupiter systems. Aims. In this paper, we aim to characterize a transiting planetary candidate in the southern skies found in the combined MASCARA and bRing data sets of HD 85628, an A7V star of V = 8.2 mag at a distance 172 pc, to establish its planetary nature. Methods. The candidate was originally detected in data obtained jointly with the MASCARA and bRing instruments using a Box Least-Square search for transit events. Further photometry was taken by the 0.7 m Chilean-Hungarian Automated Telescope (CHAT), and radial velocity measurements with the Fiber Dual Echelle Optical Spectrograph on the European Southern Observatory 1.0 m Telescope. High-resolution spectra during a transit were taken with the CTIO high-resolution spectrometer (CHIRON) on the Small and Moderate Aperture Research Telescope System 1.5 m telescope to target the Doppler shadow of the candidate. Results. We confirm the existence of a hot Jupiter transiting the bright A7V star HD 85628, which we co-designate as MASCARA-4b and bRing-1b. It is in an orbit of 2.824 days, with an estimated planet radius of 1.53−0.04+0.07 RJup and an estimated planet mass of 3.1 +- 0.9 MJup, putting it well within the planetary regime. The CHAT observations show a partial transit, reducing the probability that the transit was around a faint background star. The CHIRON observations show a clear Doppler shadow, implying that the transiting object is in a retrograde orbit with |λ| =244.9−3.6+2.7◦. The planet orbits at a distance of 0.047 +- 0.004 AU from the star and has a zero-albedo equilibrium temperature of 2100 +- 100 K. In addition, we find that HD 85628 has a previously unreported stellar companion star in the Gaia DR2 data demonstrating common proper motion and parallax at 4.3′′ separation (projected separation ~740 AU), and with absolute magnitude consistent with being a K/M dwarf. Conclusions. MASCARA-4 b/bRing-1 b is the brightest transiting hot Jupiter known to date in a retrograde orbit. It further confirms that planets in near-polar and retrograde orbits are more common around early-type stars. Due to its high apparent brightness and short orbital period, the system is particularly well suited for further atmospheric characterization.I.S. acknowledges support from a NWO VICI grant (639.043.107). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement nr. 694513). E.E.M. and S.N.M. acknowledge support from the NASA NExSS programme. SNM is a US Department of Defense SMART scholar sponsored by the U.S. Navy through NIWC-Atlantic. E.E.M. acknowledges support from the NASA NExSS program and a JPL RT&D award. A.W. acknowledges the support of the SNSF by the grant number P2GEP2 178191. L.V. acknowledges the support of CONICYT Project Fondecyt n. 1171364

    Gravity-darkening Analysis of the Misaligned Hot Jupiter MASCARA-4 b

    Get PDF
    MASCARA-4 b is a hot Jupiter in a highly misaligned orbit around a rapidly rotating A3V star that was observed for 54 days by the Transiting Exoplanet Survey Satellite (TESS). We perform two analyses of MASCARA-4 b using a stellar gravity-darkened model. First, we measure MASCARA-4 b's misaligned orbital configuration by modeling its TESS photometric light curve. We take advantage of the asymmetry in MASCARA-4 b's transit due to its host star's gravity-darkened surface to measure MASCARA-4 b's true spin–orbit angle to be 104°+7°-13°. We also detect a ~4σ secondary eclipse at 0.491 ± 0.007 orbital phase, proving that the orbit is slightly eccentric. Second, we model MASCARA-4 b's insolation including gravity darkening and find that the planet's received X-ray and ultraviolet flux varies by 4% throughout its orbit. MASCARA-4 b's short-period, polar orbit suggests that the planet likely underwent dramatic orbital evolution to end up in its present-day configuration and that it receives a varying stellar irradiance that perpetually forces the planet out of thermal equilibrium. These findings make MASCARA-4 b an excellent target for follow-up characterization to better understand the orbital evolution and present-day environment of planets around high-mass stars

    ATOCA: an algorithm to treat order contamination. Application to the NIRISS SOSS mode

    Full text link
    After a successful launch, the James Webb Space Telescope is preparing to undertake one of its principal missions, the characterization of the atmospheres of exoplanets. The Single Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) is the only observing mode that has been specifically designed for this objective. It features a wide simultaneous spectral range (0.6--2.8\,\micron) through two spectral diffraction orders. However, due to mechanical constraints, these two orders overlap slightly over a short range, potentially introducing a ``contamination'' signal in the extracted spectrum. We show that for a typical box extraction, this contaminating signal amounts to 1\% or less over the 1.6--2.8\,\micron\ range (order 1), and up to 1\% over the 0.85--0.95\,\micron\ range (order 2). For observations of exoplanet atmospheres (transits, eclipses or phase curves) where only temporal variations in flux matter, the contamination signal typically biases the results by order of 1\% of the planetary atmosphere spectral features strength. To address this problem, we developed the Algorithm to Treat Order ContAmination (ATOCA). By constructing a linear model of each pixel on the detector, treating the underlying incident spectrum as a free variable, ATOCA is able to perform a simultaneous extraction of both orders. We show that, given appropriate estimates of the spatial trace profiles, the throughputs, the wavelength solutions, as well as the spectral resolution kernels for each order, it is possible to obtain an extracted spectrum accurate to within 10\,ppm over the full spectral range.Comment: Submitted to PASP. 22 pages, 12 figure

    Awesome SOSS: Transmission Spectroscopy of WASP-96b with NIRISS/SOSS

    Full text link
    The future is now - after its long-awaited launch in December 2021, JWST began science operations in July 2022 and is already revolutionizing exoplanet astronomy. The Early Release Observations (ERO) program was designed to provide the first images and spectra from JWST, covering a multitude of science cases and using multiple modes of each on-board instrument. Here, we present transmission spectroscopy observations of the hot-Saturn WASP-96b with the Single Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph, observed as part of the ERO program. As the SOSS mode presents some unique data reduction challenges, we provide an in-depth walk-through of the major steps necessary for the reduction of SOSS data: including background subtraction, correction of 1/f noise, and treatment of the trace order overlap. We furthermore offer potential routes to correct for field star contamination, which can occur due to the SOSS mode's slitless nature. By comparing our extracted transmission spectrum with grids of atmosphere models, we find an atmosphere metallicity between 1x and 5x solar, and a solar carbon-to-oxygen ratio. Moreover, our models indicate that no grey cloud deck is required to fit WASP-96b's transmission spectrum, but find evidence for a slope shortward of 0.9μ\mum, which could either be caused by enhanced Rayleigh scattering or the red wing of a pressure-broadened Na feature. Our work demonstrates the unique capabilities of the SOSS mode for exoplanet transmission spectroscopy and presents a step-by-step reduction guide for this new and exciting instrument.Comment: MNRAS, in press. Updated to reflect published versio

    The relationship between the morphology and kinematics of galaxies and its dependence on dark matter halo structure in EAGLE

    Get PDF
    We investigate the connection between the morphology and internal kinematics of the stellar component of central galaxies with mass M⋆ > 109.5 M⊙ in the EAGLE simulations. We compare several kinematic diagnostics commonly used to describe simulated galaxies, and find good consistency between them. We model the structure of galaxies as ellipsoids and quantify their morphology via the ratios of their principal axes. We show that the differentiation of blue star-forming and red quiescent galaxies using morphological diagnostics can be achieved with similar efficacy to the use of kinematical diagnostics, but only if one is able to measure both the flattening and the triaxiality of the galaxy. Flattened oblate galaxies exhibit greater rotational support than their spheroidal counterparts, but there is significant scatter in the relationship between morphological and kinematical diagnostics, such that kinematically-similar galaxies can exhibit a broad range of morphologies. The scatter in the relationship between the flattening and the ratio of the rotation and dispersion velocities (v/σ) correlates strongly with the anisotropy of the stellar velocity dispersion: at fixed v/σ, flatter galaxies exhibit greater dispersion in the plane defined by the intermediate and major axes than along the minor axis, indicating that the morphology of simulated galaxies is influenced significantly by the structure of their velocity dispersion. The simulations reveal that this anisotropy correlates with the intrinsic morphology of the galaxy’s inner dark matter halo, i.e. the halo’s morphology that emerges in the absence of dissipative baryonic physics. This implies the existence of a causal relationship between the morphologies of galaxies and that of their host dark matter haloes

    Giant Outer Transiting Exoplanet Mass (GOT ’EM) Survey. III. Recovery and Confirmation of a Temperate, Mildly Eccentric, Single-transit Jupiter Orbiting TOI-2010

    No full text
    Large-scale exoplanet surveys like the Transiting Exoplanet Survey Satellite (TESS) mission are powerful tools for discovering large numbers of exoplanet candidates. Single-transit events are commonplace within the resulting candidate list due to the unavoidable limitation of the observing baseline. These single-transit planets often remain unverified due to their unknown orbital periods and consequent difficulty in scheduling follow-up observations. In some cases, radial velocity (RV) follow up can constrain the period enough to enable a future targeted transit detection. We present the confirmation of one such planet: TOI-2010 b. Nearly three years of RV coverage determined the period to a level where a broad window search could be undertaken with the Near-Earth Object Surveillance Satellite, detecting an additional transit. An additional detection in a much later TESS sector solidified our final parameter estimation. We find TOI-2010 b to be a Jovian planet ( M _P = 1.29 M _Jup , R _P = 1.05 R _Jup ) on a mildly eccentric orbit ( e = 0.21) with a period of P = 141.83403 days. Assuming a simple model with no albedo and perfect heat redistribution, the equilibrium temperature ranges from about 360 to 450 K from apastron to periastron. Its wide orbit and bright host star ( V = 9.85) make TOI-2010 b a valuable test bed for future low-insolation atmospheric analysis

    TOI-1431b/MASCARA-5b: A Highly Irradiated Ultra-Hot Jupiter Orbiting One of the Hottest & Brightest Known Exoplanet Host Stars

    Get PDF
    Accepted for publication in the Astronomical Journal. 39 pages, 18 figures, and 4 tablesWe present the discovery of a highly irradiated and moderately inflated ultra-hot Jupiter, TOI-1431b/MASCARA-5b (HD 201033b), first detected by NASA's Transiting Exoplanet Survey Satellite mission (TESS) and the Multi-site All-Sky CAmeRA (MASCARA). The signal was established to be of planetary origin through radial velocity measurements obtained using SONG, SOPHIE, FIES, NRES, and EXPRES, which show a reflex motion of K=294.1±1.1K=294.1\pm1.1 m s1^{-1}. A joint analysis of the TESS and ground-based photometry and radial velocity measurements reveals that TOI-1431b has a mass of Mp=3.12±0.18M_{p}=3.12\pm0.18 MJ\rm{M_J} (990±60990\pm60 M_{\oplus}), an inflated radius of Rp=1.49±0.05R_{p}=1.49\pm0.05 RJ\rm{R_J} (16.7±0.616.7\pm0.6 R_{\oplus}), and an orbital period of P=2.650237±0.000003P=2.650237\pm0.000003 d. Analysis of the spectral energy distribution of the host star reveals that the planet orbits a bright (V=8.049\mathrm{V}=8.049 mag) and young (0.290.19+0.320.29^{+0.32}_{-0.19} Gyr) Am type star with Teff=7690250+400T_{\rm eff}=7690^{+400}_{-250} K\rm{K}, resulting in a highly irradiated planet with an incident flux of F=7.240.64+0.68×\langle F \rangle=7.24^{+0.68}_{-0.64}\times109^9 erg s1^{-1} cm2^{-2} (5300470+500S5300^{+500}_{-470}\mathrm{S_{\oplus}}) and an equilibrium temperature of Teq=2370±70T_{eq}=2370\pm70 K. TESS photometry also reveals a secondary eclipse with a depth of 1275+4127^{+4}_{-5}ppm as well as the full phase curve of the planet's thermal emission in the red-optical. This has allowed us to measure the dayside and nightside temperature of its atmosphere as Tday=3004±64T_\mathrm{day}=3004\pm64 K and Tnight=2583±63T_\mathrm{night}=2583\pm63 K, the second hottest measured nightside temperature. The planet's low day/night temperature contrast (\sim420 K) suggests very efficient heat transport between the dayside and nightside hemispheres

    TOI-1431b/MASCARA-5b: A Highly Irradiated Ultrahot Jupiter Orbiting One of the Hottest and Brightest Known Exoplanet Host Stars

    Get PDF
    We present the discovery of a highly irradiated and moderately inflated ultrahot Jupiter, TOI-1431b/MASCARA-5 b (HD 201033b), first detected by NASA's Transiting Exoplanet Survey Satellite mission (TESS) and the Multi-site All-Sky Camera (MASCARA). The signal was established to be of planetary origin through radial velocity measurements obtained using SONG, SOPHIE, FIES, NRES, and EXPRES, which show a reflex motion of K = 294.1 1.1 m s-1. A joint analysis of the TESS and ground-based photometry and radial velocity measurements reveals that TOI-1431b has a mass of M p = 3.12 0.18 M J (990 60 M ⊕), an inflated radius of R p = 1.49 0.05 R J (16.7 0.6 R ⊕), and an orbital period of P = 2.650237 0.000003 days. Analysis of the spectral energy distribution of the host star reveals that the planet orbits a bright (V = 8.049 mag) and young ({0.29-0.19+0.32 Gyr) Am type star with R eff=7690-250+400 K, resulting in a highly irradiated planet with an incident flux of F =7.24-0.64+0.68 × 109 erg s-1 cm-2 (5300-470+500 S) and an equilibrium temperature of T eq = 2370 70 K. TESS photometry also reveals a secondary eclipse with a depth of 127-5+4 ppm as well as the full phase curve of the planet's thermal emission in the red-optical. This has allowed us to measure the dayside and nightside temperature of its atmosphere as T day = 3004 64 K and T night = 2583 63 K, the second hottest measured nightside temperature. The planet's low day/night temperature contrast (∼420 K) suggests very efficient heat transport between the dayside and nightside hemispheres. Given the host star brightness and estimated secondary eclipse depth of ∼1000 ppm in the K band, the secondary eclipse is potentially detectable at near-IR wavelengths with ground-based facilities, and the planet is ideal for intensive atmospheric characterization through transmission and emission spectroscopy from space missions such as the James Webb Space Telescope and the Atmospheric Remote-sensing Infrared Exoplanet Large-survey
    corecore