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ABSTRACT
We investigate the connection between the morphology and internal kinematics of the stellar component of
central galaxies with mass M? > 109.5 M� in the EAGLE simulations. We compare several kinematic diag-
nostics commonly used to describe simulated galaxies, and find good consistency between them. We model
the structure of galaxies as ellipsoids and quantify their morphology via the ratios of their principal axes. We
show that the differentiation of blue star-forming and red quiescent galaxies using morphological diagnostics
can be achieved with similar efficacy to the use of kinematical diagnostics, but only if one is able to mea-
sure both the flattening and the triaxiality of the galaxy. Flattened oblate galaxies exhibit greater rotational
support than their spheroidal counterparts, but there is significant scatter in the relationship between mor-
phological and kinematical diagnostics, such that kinematically-similar galaxies can exhibit a broad range
of morphologies. The scatter in the relationship between the flattening and the ratio of the rotation and dis-
persion velocities (v/σ) correlates strongly with the anisotropy of the stellar velocity dispersion: at fixed
v/σ, flatter galaxies exhibit greater dispersion in the plane defined by the intermediate and major axes than
along the minor axis, indicating that the morphology of simulated galaxies is influenced significantly by the
structure of their velocity dispersion. The simulations reveal that this anisotropy correlates with the intrinsic
morphology of the galaxy’s inner dark matter halo, i.e. the halo’s morphology that emerges in the absence of
dissipative baryonic physics. This implies the existence of a causal relationship between the morphologies of
galaxies and that of their host dark matter haloes.

Key words: galaxies: structure – galaxies: kinematics and dynamics – galaxies: formation –
galaxies: evolution – galaxies: haloes

1 INTRODUCTION

The morphology and internal kinematics of galaxies are funda-
mental characteristics, both of which have an established tradition
as a means to classify the galaxy population and infer aspects of
its evolution over cosmic time. The two properties are closely re-
lated, with flattened, disky galaxies primarily supported by rotation,
whilst spheroidal or elliptical galaxies exhibit greater dispersion
support (for recent observational findings see van de Sande et al.
2017, 2018b; Graham et al. 2018). Moreover, it is well established
that both quantities correlate broadly with other properties, for ex-
ample mass (e.g. Dressler 1980; Baldry et al. 2006; Kelvin et al.
2014), colour (e.g. Blanton et al. 2003; Driver et al. 2006) and star
formation rate (Kennicutt 1983; Kauffmann et al. 1993), indicating
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that they encode information relating to the formation history of
galaxies. In particular, the recognition that the specific angular mo-
mentum of stars is markedly higher in late-type galaxies than in
early-type counterparts (Fall & Frenk 1983; Romanowsky & Fall
2012; Fall & Romanowsky 2018) led to the development of an-
alytic galaxy evolution models in which the latter more readily
dissipate their angular momentum throughout their assembly (e.g.
Fall & Efstathiou 1980; Mo et al. 1998), for example as a conse-
quence of a more intense merger history.

The relatively recent advent of large surveys conducted with
wide-field integral field spectrographs has enabled the compilation
of large and diverse samples of galaxies in the local Universe with
well-characterised morphological and kinematical properties (e.g.
de Zeeuw et al. 2002; Cappellari et al. 2011; Croom et al. 2012;
Sánchez et al. 2012; Ma et al. 2014; Bundy et al. 2015). One of the
prime outcomes of these endeavours is the demonstration that there
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is a not a simple mapping between galaxy morphology and inter-
nal kinematics, particularly within the family of early-type galaxies
for which the kinematics are not generally dominated by rotation
(for a recent review see Cappellari 2016). Early-type galaxies with
similar morphologies are found to exhibit a diversity of kinematic
properties, indicating that kinematic diagnostics may yield a more
fundamental means of classifying galaxies than purely morpholog-
ical descriptions (e.g. Emsellem et al. 2007; Krajnović et al. 2013;
Cortese et al. 2016; Graham et al. 2018). Similarly, Foster et al.
(2017) recently showed that the morphologies of kinematically-
selected galaxies are clearly correlated with the degree of rotational
support, but with a large degree of scatter. Analytic modelling of
galaxies using the tensor virial theorem indicates that this diversity
stems from differing degrees of anisotropy in the stellar velocity
dispersion (e.g. Binney 1976), but the origin of the diversity in the
inferred anisotropy remains unclear.

Several families of cosmological simulations of galaxy for-
mation have recently emerged that reproduce key characteris-
tics and scaling relations exhibited by the observed galaxy pop-
ulation (see e.g. Vogelsberger et al. 2014; Schaye et al. 2015;
Kaviraj et al. 2017; Pillepich et al. 2018). Such simulations evolve
the dark matter and baryonic components self-consistently from
cosmologically-motivated initial conditions, and the morphological
and kinematical properties of galaxies emerge in response to this
assembly. Crucially, the current generation of state-of-the-art cos-
mological simulations do not suffer from ‘catastrophic overcool-
ing’ (Katz & Gunn 1991; Navarro & Steinmetz 1997; Crain et al.
2009), a failure to adequately regulate the inflow of gas onto
galaxies, which results in the formation of a galaxy popula-
tion that is generally too old, too massive, too compact, and
too dispersion-supported. This success is in part due to improve-
ments in the numerical treatment of hydrodynamical processes,
but more importantly is due to the implementation of feedback
treatments that effectively regulate and quench star formation (e.g.
Okamoto et al. 2005; Scannapieco et al. 2008; Governato et al.
2009; Dalla Vecchia & Schaye 2012; Scannapieco et al. 2012;
Crain et al. 2015) and preferentially eject low angular momentum
gas from the interstellar medium (e.g. Sommer-Larsen & Limousin
2010; Brook et al. 2011; Agertz et al. 2011).

Numerical simulations of large cosmic volumes therefore af-
ford the opportunity to examine the relationship between the mor-
phological and kinematical properties of a well-sampled population
of galaxies, the origin of scatter about such a relationship, and the
connection between these properties and other observables such as
mass, star formation rate and photometric colour. The markedly
improved realism of the current generation of state-of-the-art sim-
ulations engenders greater confidence in conclusions drawn from
their analysis.

In this study we examine the relationship between the mor-
phology and internal kinematics of galaxies formed in the EAGLE
simulations of galaxy formation (Schaye et al. 2015; Crain et al.
2015). We compare the kinematic properties of EAGLE galaxies
with quantitative morphological diagnostics, enabling a rigorous
examination of the relationship between the two properties and
their connection to other observables. The simulation also enables
us to investigate the origin of scatter about the relation between
the two properties. We have added the morphological and kine-
matical diagnostics computed for this study to the public EAGLE
database, enabling their use by the wider community. This work
complements several related studies of the morphological and/or
kinematical properties of EAGLE simulations, such as Correa et al.
(2017), who show that the kinematic properties of EAGLE galaxies

can be used as a qualitative proxy for their visual morphology and
that this morphology correlates closely with a galaxy’s location in
the colour-mass diagram; Lagos et al. (2018), who investigated the
role of mass, environment and mergers in the formation of ‘slow ro-
tators’; Clauwens et al. (2018), who identified three phases of mor-
phological evolution in galaxies, primarily as a function of their
stellar mass; and Trayford et al. (2019), who explored the emer-
gence of the Hubble ‘tuning fork’ sequence.

This paper is structured as follows. We discuss our numeri-
cal methods in Section 2, providing a brief summary of the sim-
ulations and galaxy finding algorithms, and detailed descriptions
of our techniques for characterising the morphology and internal
kinematics of simulated galaxies. In Section 3 we first examine the
morphology and internal kinematics of EAGLE galaxies, and the
relationship of these quantities with the location of the galaxies in
the colour-mass diagram, before turning to the relationship between
the morphology and internal kinematics. In Section 4 we consider
the origin of scatter about the relation between the two diagnostics.
We summarise and discuss our findings in Section 5. In Appendix
A we present a brief test of the influence of numerical resolution
on the relationship between morphology and kinematics. In Ap-
pendix B we present a brief analytical derivation of the relationship
between morphology, kinematics and the anisotropy of the veloc-
ity dispersion from the tensor virial theorem. Finally, in Appendix
C we present an explanation of how to access the morphological
and kinematical diagnostics computed here from the public EA-
GLE database.

2 NUMERICAL METHODS

In this section we present an overview of the EAGLE simulations,
including a concise description of the most relevant subgrid physics
implementations and methods for identifying galaxies and their
host haloes. Summaries of these methods are included in many pa-
pers that focus on analyses of EAGLE (e.g. Crain et al. 2017) but
we retain key details here for completeness, so readers familiar with
the simulations may wish to skip to Section 2.3. We subsequently
introduce the diagnostics used to characterise the morphology and
kinematics of our simulated galaxies; software enabling the reader
to compute these diagnostic quantities can be obtained from the
public repository at http://github.com/athob/morphokinematics.

2.1 Simulations and subgrid physics

EAGLE (Evolution and Assembly of GaLaxies and their Envi-
ronments; Schaye et al. 2015; Crain et al. 2015) is a suite of hy-
drodynamical simulations of the formation, assembly and evo-
lution of galaxies in the ΛCDM cosmogony, whose data have
been publicly released (McAlpine et al. 2016). The EAGLE sim-
ulations are particularly attractive for our purposes, because the
model was explicitly calibrated to reproduce the stellar masses and
sizes of the present-day galaxy population. Comparison with multi-
epoch observations highlights that the stellar masses (Furlong et al.
2015), sizes (Furlong et al. 2017) and angular momenta (e.g.
Swinbank et al. 2017) of EAGLE’s galaxy population also evolve
in a realistic fashion.

The EAGLE simulations adopt cosmological parameters from
Planck Collaboration (2014), namely Ω0 = 0.307, Ωb = 0.04825,
ΩΛ = 0.693, σ8 = 0.8288, ns = 0.9611, h = 0.6777, Y =

0.248. They were evolved using a version of the N-body TreePM
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smoothed particle hydrodynamics (SPH) code gadget3, last de-
scribed by Springel (2005). This version incorporates modifications
to the hydrodynamics algorithm and the time-stepping criteria, and
includes a series of subgrid routines that govern, in a phenomeno-
logical fashion, physical processes that act on scales below the res-
olution limit of the simulations.

At ‘standard resolution’, the EAGLE simulations have particle
masses corresponding to a volume of side L = 100 comoving Mpc
(hereafter cMpc) realized with 2 × 15043 particles (an equal num-
ber of baryonic and dark matter particles), such that the initial gas
particle mass is mg = 1.81 × 106 M�, and the mass of dark matter
particles is mdm = 9.70 × 106 M�. The Plummer-equivalent gravi-
tational softening length is fixed in comoving units to 1/25 of the
mean interparticle separation (2.66 comoving kpc, hereafter ckpc)
until z = 2.8, and in proper units (0.70 proper kpc, hereafter pkpc)
thereafter. The standard-resolution simulations marginally resolve
the Jeans scales at the density threshold for star formation in the
warm and diffuse photoionised ISM. High-resolution simulations
adopt particle masses and softening lengths that are smaller by fac-
tors of 8 and 2, respectively.

The updates to the hydrodynamics algorithm, which are
detailed in Appendix A of Schaye et al. (2015), comprise the
pressure-entropy formulation of SPH of Hopkins (2013), the
Cullen & Dehnen (2010) artificial viscosity switch, an artificial
conduction switch similar to that proposed by Price (2008),
the use of the Wendland (1995) C2 smoothing kernel, and the
Durier & Dalla Vecchia (2012) time-step limiter. The influence of
these developments on the galaxy population realised by the simu-
lations is explored in the study of Schaller et al. (2015b).

Gas particles denser than a metallicity-dependent den-
sity threshold for star formation (Schaye 2004) become eli-
gible for conversion into stellar particles. The probability of
stochastic conversion is dependent on the gas particle’s pressure
(Schaye & Dalla Vecchia 2008). Supermassive black holes (BHs)
are seeded in haloes identified by a friends-of-friends (FoF) al-
gorithm run periodically during the simulation, and they grow by
gas accretion and mergers with other BHs (Springel et al. 2005;
Booth & Schaye 2009; Schaye et al. 2015). The gas accretion rate
onto BHs is influenced by the angular momentum of gas close to
the BH (see Rosas-Guevara et al. 2015) and cannot exceed the Ed-
dington limit.

Feedback associated with the evolution of massive stars (‘stel-
lar feedback’) and the growth of BHs (‘AGN feedback’) is also im-
plemented stochastically (Dalla Vecchia & Schaye 2012). The ef-
ficiency of stellar feedback is a function of the local density and
metallicity of each newly-formed stellar particle; the dependence of
the feedback efficiency on these properties was calibrated to ensure
that the simulations reproduce the present-day galaxy stellar mass
function, and produce disc galaxies with realistic sizes (Crain et al.
2015). The efficiency of AGN feedback was calibrated such that the
simulations reproduce the relationship between the stellar masses
of galaxies and the masses of their central BHs, at the present day.

The mass of stellar particles is ∼ 106 M�, so each can be mod-
elled as a simple stellar population (SSP). We assume the initial
mass function (IMF) of stars of the form proposed by Chabrier
(2003), with masses 0.1 − 100 M�. The return of mass and nucle-
osynthesised metals from stars to the interstellar medium (ISM) is
implemented as per Wiersma et al. (2009b); this scheme follows
the abundances of the 11 elements most important for radiative
cooling and photoheating (H, He, C, N, O, Ne, Mg, Si, S, Ca and
Fe), using nucleosynthetic yields for massive stars, Type Ia SNe,
Type II SNe and the AGB phase. Element-by-element radiative

cooling and heating of gas is implemented as per Wiersma et al.
(2009a), assuming the to be optically thin and in ionisation equi-
librium with the cosmic microwave and metagalactic UV back-
grounds.

The simulations lack the resolution to model the cold, dense
phase of the ISM explicitly. They thus impose a temperature floor,
Teos(ρ), which prevents the spurious fragmentation of star-forming
gas. The floor takes the form of an equation of state Peos ∝ ρ4/3

normalised so Teos = 8000K at nH = 0.1cm−3. The temperature
of star-forming gas therefore reflects the effective pressure of the
ISM, rather than its actual temperature. Since the Jeans length of
gas on the temperature floor is ∼ 1 pkpc, a drawback of its use is
that it suppresses the formation of gaseous discs with vertical scale
heights much shorter than this scale. However, as recently shown
by Benítez-Llambay et al. (2018), the primary cause of the thicken-
ing of non-self-gravitating discs in EAGLE is likely to be turbulent
pressure support stemming from the gas accretion and energy in-
jection from feedback, and the influence of the latter is likely to
be artificially high. We comment further on the implications of this
thickening for our study in Section 2.3.

Our analyses focus primarily on the simulation of the largest
volume, Ref-L100N1504. To facilitate convergence testing (pre-
sented in Appendix A), we also examine the high-resolution
Recal-L025N0752 simulation. The feedback efficiency parameters
adopted by this model were recalibrated to ensure reproduction of
the calibration diagnostics at high resolution (see Crain et al. 2015).

2.2 Identifying and characterizing galaxies

We consider galaxies as the stellar component of gravitationally
self-bound structures. The latter are identified using the subfind al-
gorithm (Springel et al. 2001; Dolag et al. 2009), applied to haloes
identified using the friends-of-friends algorithm (FoF). The sub-
structure, or ‘subhalo’, hosting the particle with the lowest gravita-
tional potential in each halo is defined as the ‘central’ subhalo, with
all others considered as satellite subhaloes, which may host satel-
lite galaxies. The coordinate of this particle defines the centre of the
galaxy, about which is computed the spherical overdensity mass,
M200, for the adopted enclosed density contrast of 200 times the
critical density. When aggregating the stellar properties of galax-
ies, we consider all stellar particles residing within a 3D spherical
aperture of radius 30 pkpc centered on the galaxy’s potential min-
imum; as shown by Schaye et al. (2015), this yields stellar masses
comparable to those recovered within a projected circular aperture
of the Petrosian radius.

To suppress environmental influences on the morphology and
kinematics of galaxies, we focus exclusively on central galaxies.
Since the characterisation of these properties also requires par-
ticularly good particle sampling, we require that galaxies have a
present-day stellar mass M? > 109.5 M�, which corresponds to a
minimum of ' 1700 stellar particles. We further exclude from con-
sideration galaxies with a resolved satellite subhalo (i.e. comprised
of 20 or more particles of any type) whose mass is at least 1 percent
of the central galaxy’s total mass, and whose potential minimum
resides within the 30 pkpc aperture. These selection criteria are sat-
isfied by 4155 present-day central galaxies in Ref-L100N1504.

2.3 Characterising galaxy morphology with shape
parameters

As discussed in Section 2.1 and demonstrated by Trayford et al.
(2017), disc galaxies in the EAGLE simulations are more
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vertically-extended than their counterparts in nature. We therefore
opt against performing a detailed structural decomposition to char-
acterise the galaxies’ morphologies, such as might be achieved by
applying automated multi-component profiling algorithms (see e.g.
Simard 1998; Peng et al. 2002; Robotham et al. 2017) to mock im-
ages of the galaxies. Instead, we obtain a quantitative description
of the galaxies’ structures by modelling the spatial distribution of
their stars with an ellipsoid, characterised by the flattening (ε) and
triaxiality (T ) parameters. These are defined as:

ε = 1 −
c
a
, and T =

a2 − b2

a2 − c2 , (1)

where a, b, and c are the moduli of the major, intermediate and
minor axes, respectively. For spherical haloes, ε = 0 and T is un-
defined, whilst low and high values of T correspond to oblate and
prolate ellipsoids, respectively. Clearly, these diagnostics are poor
descriptors of systems that deviate strongly from axisymmetry but,
as noted by Trayford et al. (2019), such galaxies are rare within the
present-day galaxy population. The axis lengths are defined by the
square root of the eigenvalues, λi (for i = 0, 1, 2), of a matrix that
describes the galaxy’s 3-dimensional mass distribution. The sim-
plest choice is the tensor of the quadrupole moments of the mass
distribution1 (see e.g. Davis et al. 1985; Cole & Lacey 1996; Bett
2012), defined as:

Mi j =

∑
p mprp,irp, j∑

p mp
, (2)

where the sums run over all particles comprising the structure, i.e.
with rp < 30 pkpc, rp,i denotes the component i (with i, j = 0, 1, 2)
of the coordinate vector of particle p, and mp is the particle’s mass.
However, we opt to use an iterative form of the reduced inertia ten-
sor (see e.g. Dubinski & Carlberg 1991; Bett 2012; Schneider et al.
2012). The use of an iterative scheme is advantageous in cases
where the morphology of the object can deviate significantly from
that of the initial particle selection, as is the case here for flattened
galaxies. The reduced form of the tensor mitigates the influence of
structural features in the outskirts of galaxies by down-weighting
the contribution of particles farther from their centre, i.e. with larger
ellipsoidal radius, r̃p (eq. 4):

Mr
i j =

∑
p

mp

r̃2
p

rp,irp, j∑
p

mp

r̃2
p

. (3)

In the first iteration, all stellar particles comprising the galaxy
(those within a spherical aperture of r = 30 pkpc) are considered,
yielding an initial estimate of the axis lengths (a, b, c). Stellar par-
ticles enclosed by the ellipsoid of equal volume described by the
axis ratios:

r̃2
p ≡ r2

p,a +
r2

p,b

(b/a)2 +
r2

p,c

(c/a)2 6

(
a2

bc

)2/3

(30 pkpc)2, (4)

are then identified, where the quantities rp,a, rp,b and rp,c are the
distances projected along the directions defined by the eigenvectors
calculated in the previous iteration, and the axis lengths recomputed
from this set. This process continues until the fractional change
of both of the ratios c/a and b/a converges to < 1 percent. Such
convergence is generally achieved within 8-10 iterations, and the
resulting median lengths of the aperture’s major axis for galaxies
of ε ' (0.2, 0.5, 0.8) are a = (34, 39, 50) pkpc.

1 As noted elsewhere, the mass distribution tensor is often referred to as
the moment of inertia tensor, since the two share common eigenvectors.

2.4 Characterising galaxy kinematics

Several diagnostic quantities are frequently used to characterise
the kinematic properties of simulated galaxies. We briefly describe
five of the most commonly-adopted diagnostics below, and assess
the consistency between them in Section 2.4.1. In all cases,
coordinates are computed in the frame centered on the galaxy’s
potential minimum, and velocities in the frame defined by the
mean velocity of star particles within 30 pkpc of this centre. Unlike
the calculation of the shape parameters, for which we consider
particles within an iteratively-defined ellipsoidal aperture, the
particle-based kinematic diagnostics described here are computed
using stellar particles within a spherical aperture of r = 30 pkpc,
for consistency with the existing literature.

Fraction of counter-rotating stars: The mass fraction of stars that
are rotationally-supported (which can be considered the ‘disc’ mass
fraction) is a simple and intuitive kinematic diagnostic. A popular
means of estimating the disc fraction is to assume that the bulge
component has no net angular momentum, and hence its mass can
be estimated as twice the mass of stars that are counter-rotating
with respect to the galaxy (e.g. Crain et al. 2010; McCarthy et al.
2012; Clauwens et al. 2018). We therefore consider the disc-to-
total mass fraction, D/T , to be the remainder when the bulge-to-
total mass fraction, B/T is subtracted:

D
T

= 1 −
B
T

= 1 − 2
1

M?

∑
i,Lz,i<0

mi, (5)

where the sum is over all counter-rotating (Lz,i < 0) stellar particles
within 30 pkpc, mi is the mass of each stellar particle and Lz,i is the
component of its angular momentum projected along the rotation
axis, where the latter is the unit vector parallel to the total angular
momentum vector of all stellar particles with r < 30 pkpc.

Rotational kinetic energy: the parameter κco specifies the fraction
of a particle’s total kinetic energy, K, that is invested in co-rotation
Krot

co (Correa et al. 2017):

κco =
Krot

co

K
=

1
K

∑
i,Lz,i>0

1
2

mi

(
Lz,i

miRi

)2

, (6)

where the sum is over all co-rotating (Lz,i > 0) stellar particles
within 30 pkpc, and Ri is the 2-dimensional radius in the plane nor-
mal to the rotation axis. The total kinetic energy in the centre of
mass frame is K =

∑
i

1
2 miv2

i , again summing over all stellar parti-
cles within 30 pkpc.

Correa et al. (2017) used this diagnostic to characterise
the kinematics of EAGLE galaxies, and found that dividing the
population about a threshold in κco provides a means of separating
the ‘blue cloud’ (κco > 0.4) of disky star-forming galaxies from
the ‘red sequence’ (κco < 0.4) of spheroidal passive galaxies in the
galaxy colour - stellar mass diagram. As those authors discussed,
eq. 6 differs slightly from the usual definition of κ (Sales et al.
2010), insofar that only corotating particles contribute to the
numerator. This results in a better measure of the contribution
of rotation to the kinematics of the galaxy, since the majority of
counter-rotating particles are found within the bulge component.

Spin parameter: we use the measurements of the mass-weighted
stellar spin parameter, λ?, computed for EAGLE galaxies in a sim-
ilar manner to the calculation of luminosity-weighted stellar spin
parameters presented by Lagos et al. (2018). We create datacubes
similar to those recovered by integral field spectroscopy, by pro-
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jecting stellar particles onto a 2-dimensional grid to create a stellar
mass-weighted velocity distribution for each pixel. We fit a Gaus-
sian function to this distribution, defining the rotation velocity as
that at which the Gaussian peaks, and the velocity dispersion as the
square root of the variance, and arrive at the spin via:

λ? =

∑
i mirivi∑

i miri

√
v2

i + σ2
i

, (7)

where mi is the total stellar mass of the pixel i, vi is its line-of-sight
velocity, σi is its (1-dimensional) line-of-sight velocity dispersion,
and ri is the pixel’s 2-dimensional galactocentric radius. The sum
runs over pixels enclosed within the 2-dimensional projected
stellar half-mass radius, r?,1/2. We compute spin measurements
from maps in which the galaxies are oriented edge-on with respect
to the spin vector. We note that this observationally-motivated
definition of the spin parameter differs from the classical definition
(see e.g. Bullock et al. 2001).

Orbital circularity: the parameter2 ξ (see e.g. Abadi et al. 2003;
Zavala et al. 2016) specifies the circularity of a particle’s orbit by
comparing its angular momentum to the value it would have if on a
circular orbit with the same binding energy:

ξi =
jz,i

jcirc(Ei)
, (8)

where jz,i is the particle specific angular momentum projected
along the rotation axis, and jcirc(Ei) is the specific angular momen-
tum corresponding to a circular orbit with the same binding energy
Ei. We estimate the latter as the maximum value of jz for all stellar
particles within 30 pkpc and E < Ei. Positive (negative) values of ξ
correspond to co-rotation (counter-rotation).

An advantage of this method is that it can be used to
assign particles to bulge and disc components, thus enabling
a kinematically-defined structural decomposition. However, to
enable a simple comparison with other kinematic diagnostics, we
assign to each galaxy the median of the ξ values, ξ, exhibited by
star particles within 30 pkpc of the galaxy centre.

Ratio of rotation and dispersion velocities: the ratio of rotation and
dispersion velocities is often used as a kinematical diagnostic since,
as noted in the discussion of the spin parameter, both the rotation
velocity and the velocity dispersion can be estimated from spec-
troscopic observations of galaxies (van de Sande et al. 2017). We
adopt a cylindrical coordinate frame (r,z,θ), with the z-axis parallel
to the total angular momentum of stellar particles within 30 pkpc
and the azimuthal angle increasing in the direction of net rotation,
and equate the rotation velocity of each galaxy, Vrot, to the absolute
value of the ‘mass-weighted median’ of the tangential velocities,
vθ,i, of its stellar particles. We compute mass-weighted medians of
variables by identifying the value that equally divides the weights,
i.e. we construct the cumulative distribution of weights from rank-
ordered values of the variable in question, and interpolate to the
value that corresponds to the ‘half-weight’ point. Since we weight
by particle masses, this is equivalently the ‘half-mass value’.

To connect with observational measurements of the disper-
sion, which necessarily recover an estimate of the line-of-sight
velocity dispersion, we seek the velocity dispersion in the ‘disc

2 We use the symbol ξ to denote the orbital circularity rather than the more
commonly adopted ε to avoid confusion with the flattening parameter, ε,
defined in Section 2.3.

plane’, i.e. the plane normal to the z-axis, which we denote σ0.
The latter represents all remaining motion within the disc plane
following the subtraction of the ordered co-rotational component,
which can in principle comprise coherent streaming with respect
to the centre-of-velocity frame, randomly-oriented elliptical or-
bits, or circular orbits that are mis-aligned with the disc, including
counter-rotation. This component can be computed from the tensor
virial equations: for an axisymmetric system of stellar particles in a
Cartesian frame and rotating about the z-axis, 2Txx +Πxx +Wxx = 0,
with Txx = Tyy and Ti j = 0 for i , j, and similarly for both Π and
W. Here, W is the potential energy and T and Π are the contribu-
tions to the kinetic energy tensor, K, from ordered and disordered
motion, respectively, such that Ki j = Ti j+

1
2 Πi j. Binney & Tremaine

(1987) show that 2Txx = 1
2 M?V2

los (assuming rotation about the z-
axis is the only streaming motion) and Πxx = M?σ

2
los, where Vlos

and σlos are the line-of-sight rotation velocity and velocity disper-
sion, respectively.

Since we seek the velocity dispersion in the disc plane rather
than along the line-of-sight, we exploit that the disc plane and ver-
tical contributions are separable, i.e. 2Tzz + Πzz + Wzz = 0 also, and
use

K − Kzz =
1
2

M?V2
rot + M?σ

2
0, (9)

which can be rearranged and solved for σ0, as K and Kzz are the
total and vertical kinetic energies of the system of stellar particles.

The disordered motion, Π, can also be separated into its
components along the vertical axis (M?σ

2
z ) and in the disc plane

(M?σ
2
0); these are related via the parameter, δ, which describes the

anisotropy of the galaxy’s velocity dispersion:

δ = 1 −
(
σz

σ0

)2

. (10)

Values of δ > 0 indicate that the velocity dispersion is primarily
contributed by disordered motion in the disc plane, i.e. that defined
by the intermediate and major axes, rather than disordered motion
in the direction of the minor axis. A more complete derivation of
these equations is presented in Appendix B.

2.4.1 A brief comparison of kinematical diagnostics

We show in Fig. 1 the kinematical properties of EAGLE galaxies,
as characterised by the diagnostics presented in Section 2.4. From
top to bottom, these are: the disc-to-total stellar mass ratio, D/T ;
the kinetic energy in co-rotation, κco; the stellar mass-weighted spin
parameter, λ?; and the median orbital circularity, ξ. These quanti-
ties are shown as a function of the ratio of rotation and dispersion
velocities, vrot/σ0. The panels show the distribution of the 4155
galaxies of our sample as a 2-dimensional probability distribution
function, with 40 cells in each dimension. Only cells sampled by
at least 3 galaxies are coloured; galaxies associated with poorly-
sampled cells are drawn individually. The overplotted lines show
the binned median and 1σ (16th-84th percentile) scatter of the de-
pendent variables. The 1-dimensional distributions in each variable
are shown via the grey-scale linear histograms. The median values
of D/T , κco, λ?, ξ and vrot/σ0, denoted by signposts on the grey-
scale histograms, are 0.42, 0.40, 0.34, 0.27 and 0.62, respectively.

Reassuringly, there is a strong positive correlation between
each of D/T , κco, λ? and ξ, plotted as dependent variables, and
vrot/σ0. Since the correlations are not linear for all values of vrot/σ0,
we quantify their strength with the Spearman rank-order coeffi-
cient, ρSp, the values of which are unsurprisingly high: 0.98 for
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Figure 1. The relationship between vrot/σ0 and other kinematic diagnos-
tics commonly used to characterise simulated galaxies, from top to bottom:
D/T , κco, λ? and ξi. The panels show the 2-dimensional histogram of the
4155 galaxies in our sample, with the parameter space sampled by 40 cells
in each dimension. Cells sampled by at least 3 galaxies are coloured to
show their contribution to the distribution; galaxies associated with poorly-
sampled cells are drawn individually. Overplotted lines show the binned
median and 1σ (16th-84th) percentile scatter of the dependent variables.
The 1-dimensional distributions in each variable are shown as grey-scale
linear histograms, with the medians of these denoted by overlaid signposts.
The four dependent variables each correlate strongly with vrot/σ0, having
Spearman rank-order coefficients, ρSp, of 0.98 (D/T ), 0.97 (κco), 0.90 (λ?)
and 0.98 (ξi).

D/T , 0.97 for κco, 0.90 for λ?, and 0.98 for ξ. The scatter at fixed
vrot/σ0 is greatest for λ?, highlighting the intrinsic uncertainty as-
sociated with the recovery of kinematic diagnostics from surface-
brightness-limited observations. In contrast, D/T , κco and ξi all
scale nearly linearly with vrot/σ0 in the regime vrot/σ0 . 1, and
κco in particular exhibits relatively little scatter at fixed vrot/σ0.

We conclude from this brief examination that the five kine-
matical diagnostics are broadly consistent and can in general be
used interchangeably. Following the suggestion of Correa et al.
(2017) that division of the EAGLE population about a threshold of
κco = 0.4 separates the star-forming and passive galaxy populations
(which we show later in Fig. 3), we infer that a similar outcome
can be achieved by division about a threshold of vrot/σ0 ' 0.7,
which corresponds to D/T ' 0.45, λ? ' 0.35 or ξi ' 0.3. Here-
after, we use vrot/σ0 to characterise the internal kinematics of EA-
GLE galaxies; the main advantages being that it is derived using
the same framework with which we compute the velocity disper-
sion anisotropy, δ, and that it is analogous to observational mea-
surements derived from spectroscopy.

3 THE MORPHOLOGY AND KINEMATICS OF EAGLE
GALAXIES

We first examine in Section 3.1 the morphology of EAGLE galax-
ies. In Section 3.2 we perform a brief check of how well our chosen
diagnostics are able to distinguish between central galaxies in the
‘blue cloud’ and on the ‘red sequence’. Then in Section 3.3 we in-
vestigate the relationship between the two properties.

3.1 The morphologies of EAGLE galaxies

Fig. 2 shows with contours the 2-dimensional probability distribu-
tion of our sample of central galaxies in the space defined by the tri-
axiality, T , and flattening, ε, shape parameters (see equation 1). The
galaxies are assigned to a grid with 20 cells in each dimension, and
contours are drawn for levels corresponding to the 50th, 84th and
99th percentiles of the distribution. The galaxies were then rebinned
to a coarse grid of 8 × 6 cells, and a galaxy within each cell was
selected at random. Face-on and edge-on images of these galaxies,
created using the techniques described by Trayford et al. (2015),
were extracted from the EAGLE public database3 (McAlpine et al.
2016) and are shown in the background of the plot to provide a
visual impression of the morphology corresponding to particular
values of the shape parameters (ε,T ).

Oblate systems are found towards the left-hand side of the fig-
ure (T ' 0), and prolate to the right (T ' 1)4, while highly-flattened
discs are found towards the top of the figure and vertically-extended
galaxies at the bottom. The contours indicate that the region of the
(ε,T ) plane most populated by the galaxies satisfying our initial
selection criteria is that of flattened, oblate ellipsoids. The sample
spans the full range of both parameters, with high-T galaxies tend-
ing to be less flattened and hence significantly prolate. The median
values of ε and T are 0.46 and 0.19, respectively. The plane features
two ‘zones of avoidance’, firstly at (high-ε, high-T ) which requires
that the entire galaxy assume a bar-like configuration, and secondly
at the very lowest flattening values (ε < 0.1), which require that
galaxies are almost perfectly spherical.

3 http://galaxy-catalogue.dur.ac.uk
4 Ellipsoids with T ' 0.5 are purely triaxial.
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Figure 2. Two-dimensional histogram of the sample of 4155 central galaxies in the parameter space defined by the triaxiality, T , and flattening, ε, shape
parameters (see eq. 1). The parameter space is sampled with cells of ∆T = 0.05 and ∆ε = 0.04, and the overlaid contours correspond to the 50th, 84th and 99th
percentiles of the distribution. The background is comprised of pairs of face-on and edge-on images of randomly-selected galaxies, 60 pkpc on a side, drawn
from the corresponding region of the parameter space to provide a visual impression of the morphology defined by the corresponding shape parameters. The
most common configuration is a flattened, oblate ellipsoid, but galaxies span the majority of the available parameter space.

The oblate galaxies exhibit axisymmetry about the minor axis,
while prolate systems are characterised by an intermediate axis that
is significantly shorter than their major axis, and thus resemble
cigars. We note that the face-on and edge-on orientations of the
galaxy images were defined relative to the axis of rotation, rather
than the structural minor axis; the two axes tend to be near-parallel
in relaxed oblate systems but are often mis-aligned in prolate sys-
tems, the majority of which rotate about the major rather than minor
axis (consistent with the observational findings of Krajnović et al.
2018). As such, the images of prolate systems can appear poorly
aligned. The images of several prolate systems also show evidence
of tidal disturbance and/or merger remnants, suggesting that prolate
structure may be induced by interactions with neighboring galax-
ies.

Inspection of Fig. 2 also highlights a qualitative trend: star-
forming galaxies, which are identifiable via blue, and typically ex-
tended, components in the images, are found preferentially in the
(high-ε, low-T ) regime, characteristic of discs. Conversely, red qui-
escent galaxies are preferentially located the low-ε regime. How-

ever, we note that the images of galaxies in the prolate regime
exhibit blue, often asymmetric, structures, indicating that the in-
teractions with neighbouring galaxies that induce prolate structure
also induce star formation. Trayford et al. (2016) show that such
interactions can enable red galaxies to temporarily “rejuvenate”,
and move from the red sequence back to the blue cloud (see also
e.g. Robertson et al. 2006). In the following section, we explore the
consequences of this complexity in the (ε, T ) plane in more detail.

3.2 Correspondence with the colour-mass relation

We now turn to a quantitative examination of the relationship be-
tween the morphology and kinematics of galaxies on the one hand,
and their location in the colour-mass plane on the other hand. The
panels of Fig. 3 show with contours the 2-dimensional histogram
of the simulated galaxies in the (u? − r?) colour - stellar mass
plane, where the superscript ? denotes intrinsic colours, i.e. rest-
frame and dust-free. In all panels, galaxies are binned onto a grid
with 20 cells in each dimension. As per the images shown in Fig.
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Figure 3. Two-dimensional probability distribution functions of the present-day (u? − r?) − M? relation defined by our sample of 4155 well-sampled central
galaxies. The parameter space is sampled with 20 cells in each dimension, and the overlaid contours correspond to the 50th, 84th and 99th percentiles of the
distribution. In the regime where cells are sampled by fewer than 3 galaxies, galaxies are represented individually by points. The dot-dashed line corresponds
to the definition of the ‘green valley’ advocated by Schawinski et al. (2014), separating the ‘red sequence’ from the ‘blue cloud’. Cells and points are coloured
by the median flattening, ε, of the galaxies in the upper left-hand panel, the median triaxiality, T , of galaxies in the upper right-hand panel, by the median of
the parameter αm (see main text) in the lower left-hand panel, and by the median rotation-to-dispersion velocity, vrot/σ0, in the lower right-hand panel. The
colouring shows that the blue cloud is preferentially comprised of flattened, rotationally-supported galaxies with low triaxiality, whilst red sequence galaxies
tend to be spheroidal or prolate, and exhibit significant dispersion support. The two populations can be differentiated with similar efficacy using thresholds of
αm ' 0.5 or vrot/σ0 ' 0.7.

2, broadband magnitudes were retrieved from the EAGLE public
database, having been computed with the techniques described by
Trayford et al. (2015), who showed that the (g − r) colours of the
EAGLE galaxy population are consistent with the dust-corrected
colours of observed galaxies.

The dashed line overlaid on each panel corresponds to the def-
inition of the ‘green valley’ proposed by Schawinski et al. (2014),
(u? − r?) = 0.25 log10(M?/M�) − 0.495, which separates the blue
cloud of star-forming galaxies from the red sequence of passive
galaxies. Trayford et al. (2015, 2017) show that EAGLE’s galaxy

population naturally divides into these two populations, and we see
here that, despite the omission of satellite galaxies from our sam-
ple, which comprise a significant fraction of the low-mass regime
of the present-day red sequence, colour bimodality is still clearly
visible in the contours.

In the upper left-hand panel of Fig. 3, well-sampled cells are
coloured by the median value of the flattening parameter, ε, of the
galaxies within the cell. This plot is therefore analogous to the
colour-mass diagram shown by Correa et al. (2017, their Fig. 3), in
which the galaxies are coloured by κco. As noted in Section 2.4.1,
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Morphology and kinematics of EAGLE galaxies 9

those authors show that the blue cloud and red sequence can be rea-
sonably well separated by a simple threshold in κco. As might also
be inferred from inspection of Fig. 2, we find here that a simple
threshold in ε does not enable such a clean separation; whilst the
blue cloud is dominated by flattened galaxies ε & 0.5, only the low-
mass end of the red sequence is dominated by spheroidal galaxies.
Inspection of the upper right-hand panel of Fig. 3, in which the
cells are coloured by the median value of the triaxiality parameter,
T , shows that the flattened galaxies populating the high-mass end
of the red sequence are prolate (T ' 1) rather than disc-dominated
systems. An increasing prolate fraction with increasing stellar mass
was also reported by Li et al. (2018) based on an analysis of the
morphology of galaxies in the Illustris simulations, and recent ob-
servations with the MUSE integral field spectrograph of massive
galaxies corroborate this prediction (Krajnović et al. 2018). Con-
versely, we find that the blue cloud is overwhelmingly dominated
by flattened systems with very low values of the triaxiality param-
eter, i.e. disky galaxies.

Since neither ε nor T alone affords a simple means of sepa-
rating the blue cloud from the red sequence, we construct a new
morphological diagnostic that combines both shape parameters,
αm = (ε2 + 1 − T )/2. By construction, this diagnostic separates
spheres and prolate spheroids, characteristic of the morphology of
early-type galaxies, from the oblate spheroids that characterise the
morphology of late-type galaxies. Cells are coloured by this quan-
tity in the lower left-hand panel of Fig. 3, showing that a simple
threshold of αm ' 0.5, does a reasonable job of distinguishing
galaxies of the blue cloud from those of the red sequence.

In the lower right-hand panel of Fig. 3, cells are coloured by
the median vrot/σ0 of the galaxies in each pixel. Visual inspection
shows that the blue cloud is dominated by rotationally-supported
galaxies, whilst the galaxies comprising the red sequence are gener-
ally dispersion supported. As might be expected when considering
the correspondence between κco and vrot/σ0 discussed in Section
2.4.1, a simple threshold in the latter (e.g. vrot/σ0 ' 0.7) therefore
differentiates the blue cloud from the red sequence with a simi-
lar efficacy to the κco = 0.4 threshold advocated by Correa et al.
(2017). Comparison of the lower two panels of Fig. 3 thus shows
that the two populations can be differentiated with similar efficacy
using morphological or kinematical diagnotics, but only for the for-
mer if one is able to measure both the flattening and triaxiality of
the galaxies. In general this is not the case for observational studies,
making the spectroscopically-accessible vrot/σ0 diagnostic a par-
ticularly effective means of differentiation. For analyses of simula-
tions, the κco diagnostic is attractive, since it requires the calcula-
tion of a single quantity that is simple to interpret and which takes
values in the range [0,1].

3.3 The relationship between morphology and kinematics

We now turn to the correspondence between the morphology and
kinematics of EAGLE galaxies. In Fig. 4, we show how galax-
ies populate the vrot/σ0 − ε plane with contours corresponding to
the 50th, 84th and 99th percentiles of the distribution. The back-
ground colouring denotes the characteristic stellar mass of galaxies
at each location in vrot/σ0 − ε space. van de Sande et al. (2018a) re-
cently demonstrated that EAGLE galaxies selected to mimic those
targeted by the SAMI survey populate this parameter space in a
similar fashion to the observed sample. The upper panel of Fig. 4
shows the distribution of all 4155 central galaxies comprising our
overall sample, whilst the lower panel shows the distribution for the
sub-set of 2703 galaxies that are spheroidal (ε < 0.3), or are oblate
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Figure 4. Two-dimensional probability distribution function in the vrot/σ0
and flattening, ε, plane shown as contours corresponding to the 50th, 84th

and 99th percentiles of the distribution, drawn on a 30 × 30 grid. Well-
sampled cells are colour-coded by their median stellar masses, while galax-
ies associated with cells sampled by fewer than 3 galaxies are drawn and
coloured individually. The upper panel shows the full sample of 4155 galax-
ies, the lower panel shows the subset of 2703 galaxies that are spheroidal
(ε < 0.3), or oblate (T < 1/3) and have their angular momentum axis
aligned with their structural minor axis to within 10 degrees. Excision of
the prolate and mis-aligned systems primarily eliminates a population of
dispersion-supported (vrot/σ0 ' 0) galaxies with diverse morphologies.
The remaining sample exhibits a strong correlation between the morpholog-
ical and kinematic diagnostics, but there is significant scatter in ε at fixed
vrot/σ0.

(T < 1/3) and have their angular momentum axis aligned with their
structural minor axis to within 10 degrees. As might be inferred
from Fig. 3, massive galaxies (i.e. M? & 1010.5 M�) tend to popu-
late the high-ε regime, but exhibit a diverse range of vrot/σ0 values
since they can be rotating discs or prolate spheroids with significant
dispersion support. The excision of prolate galaxies, and a small
number of systems whose morphology and kinematics have been
influenced significantly by encounters with neighbours or recently-
merged satellites, therefore preferentially eliminates a population
of dispersion-supported (vrot/σ0 ' 0) galaxies with diverse mor-
phologies.

The remaining sample exhibits a strong correlation between
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the morphological and kinematic diagnostics (Spearman rank-order
coefficient of ρSp = 0.72), but with significant scatter in ε at fixed
vrot/σ0. It is possible to identify galaxies with vrot/σ0 ' 1 and flat-
tening parameters as diverse as ε ' 0.3 − 0.8. Similarly, flattened
galaxies with ε ' 0.7 can exhibit rotation-to-dispersion velocity ra-
tios between vrot/σ0 ' 0.5 and vrot/σ0 ' 3.5. It is therefore clear
that morphological and kinematical diagnostics are not trivially in-
terchangeable, indicating that the morphology of a galaxy is signif-
icantly influenced not only by vrot/σ0, but also by at least one other
property. In this respect the simulations are in qualitative agree-
ment with the findings of surveys conducted with panoramic inte-
gral field spectrographs (see e.g. the review by Cappellari 2016).

3.3.1 The influence of velocity dispersion anisotropy

The morphology and kinematics of collisionless systems are linked
via the tensor virial theorem. Its application to oblate, axisymmetric
spheroids rotating about their short axis, modelled as collisionless
gravitating systems, is discussed in detail by Binney (1978) and
Binney & Tremaine (1987). They show that such bodies trace dis-
tinct paths in the vrot/σ0 - ε plane, for fixed values of the velocity
dispersion anisotropy, δ (see eq. 10), offering a potential explana-
tion for the morphological diversity of galaxies at fixed vrot/σ0.

In the left-hand panel of Fig. 5, we plot once again the
vrot/σ0 − ε distribution of the sub-sample of 2703 spheroidal and
well-aligned oblate galaxies. Here, the colour coding denotes the
median velocity dispersion anisotropy of galaxies associated with
each cell that was shown in the bottom panel of Fig. 4. The overlaid
dashed curves represent the vrot/σ0−ε relation expected from appli-
cation of the tensor virial theorem to collisionless gravitating sys-
tems with δ = 0.1−0.6, in increments of 0.1 (for which a derivation
is provided in Appendix B). We remind the reader that, as shown
in Fig. 4, the high-ε regime is dominated by more-massive galaxies
(M? & 1010.5 M�), whilst the majority of the plane is sampled by
galaxies with mass closer to our selection limit of M? = 109.5 M�.

The main plot demonstrates that the analytic predictions are
a good representation of the behaviour of the simulated galaxies.
At fixed vrot/σ0, more anisotropic galaxies are clearly associated
with a more flattened morphology; taking galaxies with vrot/σ0 ' 1
as an example, those with ε ' 0.45 exhibit a typical anisotropy of
δ ' 0.2, whilst the most-flattened examples, with ε ' 0.7, exhibit
δ ' 0.5. The inset panel shows the histogram of anisotropy values
realised by the sub-sample of 2703 (green hatching), and also those
of the 329 galaxies from this sub-sample with M? & 1010.5 M� (yel-
low). For the main sub-sample, the distribution is broadly symmet-
ric about a median of 0.34, albeit with a more extended tail to low
(even negative) values. A small but significant fraction of galaxies
in the sample (' 5 percent), exhibit δ > 0.5. The subset of high-
mass galaxies spans a similar range in δ but exhibits a lower median
value of 0.29.

To highlight the influence of δ on morphology more clearly,
we compute ε̃[v/σ], the median flattening parameter of galaxies in
bins of fixed vrot/σ0, and plot in the right-hand panel of Fig. 5, as
a function of δ, the deviation of each galaxy’s flattening parame-
ter from this median, ε − ε̃[v/σ]. The solid line and shaded region
denote the median and 1σ (16th − 84th percentile) scatter of this
deviation in bins of ∆δ = 0.05. The two quantities are strongly cor-
related, with a Spearman rank-order coefficient of ρSp = 0.72. The
yellow dashed curve represents the trend of the sub-set of high-
mass galaxies; since these galaxies are largely confined to high-ε
values, we cannot recompute ε̃[v/σ] from this sub-set, and use that
of the main sample. As such the median ε − ε̃[v/σ] at fixed δ for this

subset is necessarily elevated. The morphologies of the high-mass
subset are even more strongly correlated with the anisotropy, with a
Spearman rank-order coefficient of ρSp = 0.82. The physical inter-
pretation one may therefore draw is that the flattening of EAGLE
galaxies, particularly those with low and intermediate levels of ro-
tation support (i.e. vrot/σ0 < 1), can be influenced significantly by
the anisotropy of the stellar velocity dispersion, with some galaxies
exhibiting anisotropy values as high as δ ' 0.5.

4 THE ORIGIN OF VELOCITY ANISOTROPY

The simulations enable us to examine the origin of the velocity
anisotropy that, as discussed in the previous section, can have a
significant influence on galaxy morphology. Since the equilibrium
orbits of stellar particles are strongly influenced by the structure of
the gravitational potential, we focus on the relationship between the
velocity anisotropy of galaxies and the morphology of their dark
matter haloes, since the latter is a proxy for the structure of the
potential.

In analogy with the morphology of galaxies, we quantify the
halo morphology via the flattening parameter, εdm, in this case ap-
plying the iterative reduced tensor to the distribution of dark matter
particles. Since we are concerned with the structure of the poten-
tial in the same region for which we have ‘tracers’ of the potential
(i.e. stellar particles), we begin iterating the tensor on the set of
dark matter particles located within the same r = 30 pkpc spher-
ical aperture, centred on the galaxy’s potential minimum, that is
applied to the stellar particles when computing the flattening5, ε.
We compute the halo flattening for galaxies in the Ref-L100N1504
simulation, denoting this quantity as εRef

dm , and also for their coun-
terparts identified in a simulation of the same volume, at the same
resolution, but considering only collisionless gravitational dynam-
ics (DMONLY-L100N1504). This latter quantity, which we denote
as εDMO

dm , is instructive because it describes the intrinsic shape of the
halo that emerges in the absence of the dissipative physics of galaxy
formation, and thus enables us to distinguish between cause and ef-
fect. The haloes are paired between the Ref and DMONLY simula-
tions using the bijective particle matching algorithm described by
Schaller et al. (2015a), which successfully pairs 2678 of the 2703
haloes that host spheroidal and well-aligned oblate galaxies (99.1
percent; see Section 3.3 for the definition of the sample).

The panels of Fig. 6 show the distribution of the matched
galaxies in the vrot/σ0 - ε plane. Here, the cells and points are
coloured by the median value of εRef

dm and εDMO
dm in the upper and

lower panels, respectively. Both panels show a clear trend such that,
in the regime of intermediate rotational support, the flattening of the
galaxy correlates significantly with the flattening of the central re-
gions of its parent halo, irrespective of whether εdm is measured in
the Ref or DMONLY simulation.

The influence of the morphology of the halo on that of the
galaxy is shown more clearly in the upper panel of Fig. 7 where, in
analogy to the right hand panel of Fig. 5, we show the deviation of

5 We find that correlations between galaxy morphology or velocity
anisotropy with the ‘global’ halo morphology, i.e. considering all dark mat-
ter particles bound to the main subhalo, are weak. This is perhaps un-
surprising, since the galaxy is most directly influenced by the inner halo
(Zavala et al. 2016), and it is well established that the morphology and kine-
matics of central galaxies are not strongly correlated with those of their host
haloes (e.g. Sales et al. 2012).
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Figure 5. Left: The panel shows the same sample of galaxies shown in the lower panel of Fig. 4, but here the colour coding of each cell denotes the median
dispersion anisotropy δ (eq. 10) of its associated galaxies. The alternately black and grey dashed curves represent the vrot/σ0 - ε relation expected for
δ = 0.0 − 0.6 in increments of 0.1, from application of the tensor virial theorem. The simulations reproduce the analytical predictions in both qualitative and
quantitative senses, with increased flattening at fixed vrot/σ0 clearly associated with increased anisotropy. The inset panel shows the histogram of anisotropy
values realised by this sample (green hatching) and also separately for galaxies with M? > 1010.5 M� (yellow). Right: the deviation of a galaxy’s flattening, ε,
from the median flattening for galaxies of similar vrot/σ0, ε̃[vrot/σ0], as a function of δ. The solid line and shaded region denote the median and 1σ (16th-84th

percentile) scatter about it, respectively, in bins of ∆δ = 0.05. The correlation of these quantities has a Spearman rank-order coefficient of ρSp = 0.72. Similarly,
the yellow dashed curve represents the median relationship for the high-mass end sub-population, showing a correlation with a Spearman rank-order coefficient
of ρSp = 0.82.

a galaxy’s flattening parameter from the median flattening of galax-
ies with similar kinematics, ε− ε̃[v/σ], here as a function of the inner
halo flattening. The red curve adopts εRef

dm as the halo flattening diag-
nostic, and should be compared to the upper panel of Fig. 6, whilst
the blue curve adopts εDMO

dm and shows the correlation present in the
lower panel of Fig. 6. As per the yellow dashed curve of Fig. 5b,
dotted and dot-dashed thick lines here denote the median relations
constructed using the sub-set of galaxies with M? > 1010.5 M�.

The formation of stars following the dissipative collapse of
gas drives dark matter haloes towards a more spherical and ax-
isymmetric morphology (e.g. Katz & Gunn 1991; Dubinski 1994;
Evrard et al. 1994; Springel et al. 2004; Kazantzidis et al. 2004;
Bryan et al. 2012, 2013), such that in general εDMO

dm > εRef
dm (see

Fig. 6). The two halo flattening diagnostics are strongly correlated
(ρSp > 0.5) but the fractional deviation from the 1:1 relation cor-
relates, unsurprisingly, with the halo’s stellar mass fraction within
30 kpc. The morphological transformation of the halo by dissipa-
tive physics therefore acts to compress the dynamic range in εdm,
steepening the gradient of the (ε − ε̃[v/σ]) − εdm and δ − εdm rela-
tions. However, the Spearman rank correlation coefficients of these
relationships are significantly higher when considering εRef

dm ; for the
former we recover ρSp = (0.38, 0.55) for (εDMO

dm ,εRef
dm ) respectively,

whilst for the latter relationship we recover ρSp = (0.21, 0.46). The
compression of the dynamic range therefore does not preserve the
rank ordering in εdm, and indicates that this property is, perhaps un-
surprisingly, not the sole influence on galaxy morphology at fixed
v/σ0. Nonetheless, the panel shows that, irrespective of which halo
flattening diagnostic is considered, there is a clear positive corre-
lation between the morphology of the galaxy (at fixed vrot/σ0) and
that of its host halo. The persistence of the correlation when con-
sidering εDMO

dm demonstrates that it is intrinsic, and does not emerge
as a response to the formation of a flattened galaxy at the halo cen-
tre. This engenders confidence that there is a causal connection be-
tween a galaxy’s morphology and that of its host inner dark matter
halo, which agrees with the findings of Zavala et al. (2016).

Having seen that the deviation of a galaxy’s flattening from
the median flattening at fixed vrot/σ0, ε − ε̃[vrot/σ0], correlates with
both the anisotropy of the stellar velocity dispersion, δ (see Fig.
5), and the morphology of the dark matter halo, εdm (see Fig. 6),
we check the correlation between δ and εdm, shown in the bottom
panel of Fig. 7. Again, dotted and dot-dashed thick lines here cor-
respond to the sub-set of galaxies with M? > 1010.5 M�. There is a
clear positive correlation between δ and εdm, which again persists
when one considers εDMO

dm rather than εRef
dm , indicative of an intrinsic

rather than an induced correlation. We note that in the specific case
of high-stellar mass galaxies, haloes whose central regions are rel-
atively unflattened induce significantly less anisotropy than is the
case for the broader galaxy population; this is to be expected since
high-stellar mass galaxies also exhibit high stellar mass fractions
( f? = M?/M200, see e.g. Fig. 8 of Schaye et al. 2015), mitigating
the influence of the inner halo. Nevertheless, the trend is qualita-
tively similar for galaxies of all masses, and the corollary is thus
that the anisotropy of a galaxy’s stellar velocity dispersion is in part
governed by the morphology of its inner dark matter halo, with flat-
tened haloes inducing greater anisotropy. The intrinsic morphology
of dark matter haloes is likely governed by a combination of their
formation time and their intrinsic spin; Allgood et al. (2006) note
that earlier forming haloes (at fixed mass) are systematically more
spherical, Bett et al. (2007) show that intrinsically flatter haloes
exhibit a small but systematic offset to greater spin values, and
Jeeson-Daniel et al. (2011) found that formation time (or concen-
tration) and spin are the first two principal components governing
dark matter halo structure. These properties emerge simply from
the distribution of fluctuations in the initial conditions of the simu-
lations.

5 SUMMARY AND DISCUSSION

We have performed a quantitative comparison between diagnos-
tics for the morphology and internal kinematics of the stellar com-
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Figure 6. The same sample of galaxies shown in the lower panel of Fig. 4,
but here the cells are colour-coded by the flattening of the inner (< 30 pkpc)
dark matter halo, εdm. In the upper panel, this quantity is equated to the
flattening of the dark matter halo in the Reference simulation, εRef

dm , whilst in
the bottom panel it is equated to the flattening of the corresponding halo in
dark matter-only simulation, εDMO

dm . Irrespective of which measure is used,
the most flattened galaxies at fixed vrot/σ0 are preferentially hosted by dark
matter haloes whose inner regions are more flattened.

ponent of galaxies in the EAGLE suite of cosmological simula-
tions, and investigated the origin of scatter in this relation. We
consider 4155 present-day central galaxies with stellar masses
M? > 109.5 M�, and in later analyses focus on the subset of 2703
spheroidal or oblate galaxies whose structural and kinematic axes
are well-aligned. Our results can be summarized as follows:

(i) Comparison of five diagnostic quantities frequently used to
describe the internal kinematics of the stellar particles comprising
simulated galaxies, namely the disc-to-total stellar mass fraction,
D/T , computed assuming the bulge mass is equal to twice the mass
of counter-rotating stellar particles; the fraction of kinetic energy in
ordered co-rotation, κco; the mass-weighted spin parameter, λ?; the
median orbital ellipticity, ξi; and the ratio of the rotational and dis-
persion velocities, vrot/σ0, reveals that they are strongly correlated.
This indicates that such descriptors can in general be used inter-
changeably (Fig. 1).

(ii) Modelling EAGLE galaxies as ellipsoids described by the
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Figure 7. The deviation of a galaxy’s flattening, ε from the median flat-
tening for galaxies of similar vrot/σ0 (ε − ε̃[vrot/σ0], upper panel), and the
anisotropy of the stellar velocity dispersion (δ, lower panel), as a func-
tion of the flattening of the inner dark matter halo, εdm. The solid lines
and shaded regions denote the median relations and the 1σ (16th − 84th per-
centile) scatter about them, respectively. The red curves adopt εRef

dm as the
halo flattening diagnostic, the blue curves adopt εDMO

dm . Medians are drawn
with dashed lines in bins sampled by fewer than 5 galaxies. Dotted and
dot-dashed thick lines represent the corresponding median relations for the
high-mass (M? > 1010.5 M�) sub-population for which only bins sampled
by more than 5 galaxies are drawn.

flattening (ε) and triaxiality (T ) parameters (eq. 1) provides a quan-
titative description of their stellar morphology that is consistent
with their qualitative visual appearance. The sample exhibits a di-
versity of morphologies, including spheroidal, oblate and prolate
galaxies. The majority of the sample are oblate (T . 0.3) and flat-
tened (ε & 0.4), characteristics of “disky” galaxies (Fig. 2).

(iii) The distribution of the shape parameters in the (u?-r?)
colour - stellar mass plane shows that star-forming central galaxies
(comprising the blue cloud) are typically flattened, oblate (rotation-
supported) galaxies. The red sequence (of central galaxies) is com-
prised primarily of spheroidal galaxies at low masses, whilst the
more massive regime is dominated by flattened, prolate (dispersion-
supported) galaxies. Since both the blue cloud and the red sequence
are populated by flattened galaxies, a threshold in ε does not sep-
arate the two populations as effectively as as a kinematic criterion
such as the κco = 0.4 threshold advocated by Correa et al. (2017)
(Fig. 3). We show that a diagnostic constructed from both shape
parameters, α = (ε2 + 1 − T )/2, designed to separate spheres and
prolate spheroids from oblate spheroids, is able to separate the two
populations with similar efficacy to a kinematic criterion. However
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we note that T is not readily-accessible from observations, making
kinematical diagnostics such as vrot/σ0 preferable.

(iv) Examination of the internal kinematics (quantified via
vrot/σ0) as a function of morphology (quantified via the flatten-
ing, ε) reveals a correlation between the two: as expected from
dynamical considerations, rotationally-supported galaxies tend to
be flatter than dispersion-supported counterparts. However, for
all but the most rotationally-supported galaxies, there is signifi-
cant scatter so that the population of galaxies at fixed vrot/σ0 ex-
hibits a broad range of morphologies. The most-massive galaxies
(M∗ & 1010.5 M�) tend to populate the high-ε regime, being ei-
ther rotationally-supported discs or prolate spheroids. Excision of
galaxies with prolate morphology and/or mis-aligned structural and
kinematic axes enables analysis of the morpho-kinematics of the
remaining subsample with the tensor virial theorem (Fig. 4).

(v) The tensor virial theorem (Appendix B) indicates that the
flattening of a collisionless system, at fixed vrot/σ0, is governed by
the anisotropy of its velocity dispersion, δ (eq. 10). This prediction
is borne out, in a quantitative sense, by the simulated galaxies. At
any vrot/σ0, more flattened oblate galaxies exhibit greater δ, for all
galaxy masses (Fig. 5).

(vi) A similar trend to that shown in Fig. 5 is seen if one corre-
lates ε at fixed vrot/σ0 with the flattening of the inner (< 30 pkpc)
dark matter halo, εdm. This suggests that a galaxy’s morphology
is influenced in part by the morphology of its host halo, which is
a proxy for the structure of the potential in the region traced by
stellar particles. We verify that this is an intrinsic (rather than in-
duced) correlation by measuring εdm in both the Reference EAGLE
simulation (denoting this quantity εRef

dm ) and in a simulation con-
sidering only collisionless dynamics starting from identical initial
conditions (εDMO

dm ), finding similar trends in both cases (Fig. 6).
(vii) The anisotropy δ correlates with the flattening of the inner

dark matter halo, regardless of whether one considers the flattening
of the halo in the Reference simulation, εRef

dm , or its counterpart in
the dark-matter-only simulation, εDMO

dm (Fig. 7).

We point out that the link we have established between the
shapes of galaxies and the flattening of the inner dark matter halo
differs in a fundamental way from previous work on the alignments
of galaxies with surrounding matter. Indeed, it is well established
both theoretically and observationally that galaxies tend to prefer-
entially align themselves with the (dark matter-dominated) large-
scale potential (e.g., Deason et al. 2011; Velliscig et al. 2015a,b;
Welker et al. 2017, 2018). This leads to so-called “intrinsic align-
ments” of neighbouring galaxies, which acts as a major source of
error in measurements of cosmic shear (e.g., Hirata & Seljak 2004;
Bridle & King 2007). Our work demonstrates that, not only do
galaxies tend to align themselves in a preferential way, but their
actual shapes are also determined, to an extent, by the shape of the
(local) dark matter potential well.

Our finding that the anisotropy of the stellar velocity disper-
sion of galaxies correlates with the intrinsic morphology of their
inner dark matter haloes is intriguing. The finding that the corre-
lation persists when using the morphology of the inner halo in the
corresponding dark matter only simulation is indicative of a causal
connection (see also Zavala et al. 2016). In such a scenario, the for-
mation of a dark matter halo whose inner mass distribution is intrin-
sically flattened (in the absence of the dissipative physics of galaxy
formation) will foster the formation of a galaxy whose stellar ve-
locity dispersion is preferentially expressed in the plane orthogonal
to the axis of rotation. As predicted by the tensor virial theorem,

this anisotropy fosters the formation of a galaxy that is flatter than
typical for galaxies with similar internal vrot/σ0.

The relationship between δ and εdm revealed by EAGLE is, in
principle, testable with observations. If one stacks galaxies of sim-
ilar flattening in bins of vrot/σ0, and measures the flattening of the
total matter distribution (e.g. with weak gravitational lensing), the
simulations indicate that one should expect the latter to be system-
atically greater for galaxies of lower vrot/σ0. We note that the over-
lap of the SDSS-IV/MaNGA integral field survey with the deep
imaging fields of the Hyper Suprime-Cam (HSC) survey offers a
potential means by which this might be achieved.
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APPENDIX A: NUMERICAL CONVERGENCE TESTS

Here we briefly assess the convergence of the kinematics (using
the rotation-to-dispersion velocity ratio, vrot/σ0) and morphology
(using the flattening, ε) of EAGLE galaxies with respect to reso-

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/stz448/5318646 by U

niversity of D
urham

 user on 19 February 2019



Morphology and kinematics of EAGLE galaxies 15

0 0.2 0.4 0.6 0.8
ε

0

0.5

1

1.5

2

2.5

3

3.5

v
ro

t/
σ

0

spheroids & oblate rotators

0

10

20

30

40

50

co
u

n
t

Figure A1. The relationship between vrot/σ0 and flattening, ε, for galaxies
with M? > 109.5 M� and which are i) spheroidal (ε < 0.3) or ii) oblate (T <

1/3) galaxies and have their morphological and rotational axes aligned to
within 10 degrees. The 2-dimensional histogram and orange dots represent
the 2703 galaxies of Ref-L100N1504 that satisfy these criteria (as per the
bottom panel of Fig. 4), whilst black crosses denote the corresponding 57
galaxies from Recal-L025N0752. Visual inspection suggests that the weak
convergence behaviour of vrot/σ0 and ε is good, an impression corroborated
by the two-sample Kolmogorov-Smirnoff test in each case.

lution. We consider the ‘weak convergence’ test6, comparing the
properties of galaxies formed by the Reference model at standard
resolution with those of galaxies formed by the Recalibrated model
at high-resolution.

In Fig. A1 we show as a 2-dimensional histogram in vrot/σ0−ε

space the distribution of the sub-set of 2703 galaxies from our main
sample in the Ref-L100N1504 simulation that are i) spheroidal
(ε < 0.3) or ii) oblate (T < 1/3) galaxies and have their morpholog-
ical and rotational axes aligned to within 10 degrees. The overlaid
crosses denote the 57 galaxies that satisfy the same selection cri-
teria in the high-resolution Recal-L025N0752 simulation. Inspec-
tion of the figure suggests that the distributions of vrot/σ0 and ε

from the two simulations are similar. We obtain a quantitative mea-
sure of this similarity using the two-sample Kolmogorov-Smirnoff

test, to assess the hypothesis that the values of vrot/σ0 and ε for
galaxies in the Ref-L100N1504 and Recal-L025N0752 simulations
share similar distributions. In both cases the test indicates that this
hypothesis cannot be rejected; for vrot/σ0 we obtain (D = 0.11,
p = 0.23) whilst for ε we obtain (D = 0.11, p = 0.20), where D
is the Kolmogorov-Smirnoff statistic and p is the two-tailed prob-
ability value. These findings are unchanged if instead we compare
Recal-L025N0752 to Ref-L025N0376, to control against box-size
effects.

APPENDIX B: THE INFLUENCE OF VELOCITY
DISPERSION ANISOTROPY FROM THE TENSOR
VIRIAL THEOREM

Binney (1978) and Binney & Tremaine (1987) show that the tensor
formulation of the virial theorem provides an analytical framework

6 The concept of strong and weak convergence testing was introduced by
Schaye et al. (2015).

with which one can relate the morphology of oblate spheroids to
their internal dynamics. Starting from

2Ki j + Wi j = 0, (B1)

where Ki j and Wi j represent the kinetic and potential energy ten-
sors, the former can be split into components denoting the stream-
ing motion, Ti j, and the random motion Πi j:

Ki j = Ti j +
1
2

Πi j. (B2)

For an oblate system rotating about its short axis, we can use the
notation (Vrot, σ0, δ) described in Section 2.4, yielding:

Ti j =
1
2

M?V2
rot

1/2 0 0
0 1/2 0
0 0 0

 ; Πi j = M?σ
2
0

1 0 0
0 1 0
0 0 1 − δ

 (B3)

These terms can be related to Cartesian components of the potential
energy: 1

2 M?V2
rot + M?σ

2
0 = −Wxx

M?(1 − δ)σ2
0 = −Wzz

⇒
V2

rot

σ2
0

= 2(1 − δ)
Wxx

Wzz
− 2 (B4)

where Wxx/Wzz is related to the flattening parameter, ε = 1 − c/a.
For convenience let us define the sphericity shape parameter s = 1−
ε and the term e, such that s ≡

√
1 − e2. From Binney & Tremaine

(1987, see also Roberts 1962; Binney 1978), we have for an oblate
body that:(

Wxx

Wzz

)
= −2π2G

c
a3S

(
Aa2

Cc2

)
, (S being a constant)

with

 A =
√

1−e2

e2

(
arcsin e

e −
√

1 − e2
)

C = 2
√

1−e2

e2

(
1

√
1−e2 −

arcsin e
e

)
thus

 A = s
1−s2

(
arccos s
√

1−s2 − s
)

C = 2 s
1−s2

(
1
s −

arccos s
√

1−s2

)
⇒

Wxx

Wzz
=

s−2

2
arccos s − s

√
1 − s2

s−1
√

1 − s2 − arccos s

(B5)

The dashed tracks overlaid on the left-hand panel of Fig.
5 show the relationship between vrot/σ0 and ε for δ =

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, derived using eq. (B4) and (B5).

APPENDIX C: PUBLIC RELEASE OF
MORPHOLOGICAL AND KINEMATICAL DIAGNOSTICS

We have added the values of the particle-based morphologi-
cal and kinematical diagnostics computed here to the public
EAGLE database7. We thus extend the database with an addi-
tional table for each simulation, [runname]_morphokinematics,
where e.g. [runname] is RefL0100N1504 for the largest-volume
EAGLE simulation. The table contains the shape parameters ε

(Ellipticity), εdm (DMEllipticity) and T (Triaxiality),
where εdm is the value computed for each halo in the hy-
drodynamical simulation (i.e. not its matched counterpart in
the equivalent DMONLY simulation). The following kinemat-
ical diagnostics are also included: D/T (DiscToTotal), ξi

(MedOrbitCircu), κco (KappaCoRot), vrot/σ0 (RotToDispRatio)
and δ (DispAnisotropy). We do not include values for λ? since

7 http://galaxy-catalogue.dur.ac.uk
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these values were derived from pixel maps and are hence sensi-
tive to choices concerning the construction of the maps. We pro-
vide measurements for all 28 snapshots, for the following standard-
resolution simulations: Ref-L025N0376, Ref-L050N0752, Ref-
L100N1504, AGNdT9-L050N07528, and the following high-
resolution simulations: Ref-L025N0752, Recal-L025N0752.

McAlpine et al. (2016) describe in detail how to access and
query the public EAGLE database, so below we present only a
brief example SQL query demonstrating how to retrieve from the
database the three morphological and five kinematical diagnostics
added here, for sufficiently well-resolved present-day galaxies in
the Ref-L100N1504 simulation. We note that the first field of each
new table is GalaxyID, an integer that uniquely identifies a galaxy
within a particular simulation. This number is consistent with those
used in the existing parts of the database, including the extension
by Camps et al. (2018), so the new tables can be joined with any
other table in the database.

1 SELECT
2 MK.Ellipticity AS epsilon,
3 MK.Triaxiality AS T,
4 MK.DMEllipticity AS epsilon_dm ,
5 MK.DiscToTotal AS DTratio,
6 MK.KappaCoRot AS kappa_co ,
7 MK.MedOrbitCircu AS orbital,
8 MK.RotToDispRatio AS vrotsigratio ,
9 MK.DispAnisotropy AS delta

10 FROM
11 RefL0100N1504_SubHalo AS SH,
12 RefL0100N1504_Aperture AS AP,
13 RefL0100N1504_MorphoKinem AS MK
14 WHERE
15 SH.GalaxyID = AP.GalaxyID AND
16 SH.GalaxyID = MK.GalaxyID AND
17 SH.SubGroupNumber = 0 AND
18 AP.ApertureSize = 30 AND
19 AP.Mass_Star > 3.16E9 AND
20 SH.SnapNum = 28
21 ORDER BY
22 SH.GroupNumber

8 This is the simulation introduced by Schaye et al. (2015), for which the
parameters governing gas accretion onto BHs were recalibrated at the same
time as the AGN heating temperature, to maintain an accurate reproduction
of the z = 0 galaxy stellar mass function. It should not be confused with
the simulation of the same name presented by Crain et al. (2015), for which
only the AGN heating temperature was varied.
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