36 research outputs found

    Australians’ views on carbon pricing before and after the 2013 federal election

    Get PDF
    As climate policies change through the legislative process, public attitudes towards them may change as well. Therefore, it is important to assess how people accept and support controversial climate policies as the policies change over time. Policy acceptance is a positive evaluation of, or attitude towards, an existing policy; policy support adds an active behavioural component1, 3. Acceptance does not necessarily lead to support. We conducted a national survey of Australian residents to investigate acceptance of, and support for, the Australian carbon pricing policy before and after the 2013 federal election, and how perceptions of the policy, economic ideology, and voting behaviour affect acceptance and support. We found acceptance and support were stable across the election period, which was surprising given that climate policy was highly contentious during the election. Policy acceptance was higher than policy support at both times and acceptance was a necessary but insufficient condition of support. We conclude that acceptance is an important process through which perceptions of the policy and economic ideology influence support. Therefore, future climate policy research needs to distinguish between acceptance and support to better understand this process, and to better measure these concepts

    Clash of Geofutures and the Remaking of Planetary Order: Faultlines underlying Conflicts over Geoengineering Governance

    Get PDF
    Climate engineering (geoengineering) is rising up the global policy agenda, partly because international divisions pose deep challenges to collective climate mitigation. However, geoengineering is similarly subject to clashing interests, knowledge‐traditions and geopolitics. Modelling and technical assessments of geoengineering are facilitated by assumptions of a single global planner (or some as yet unspecified rational governance), but the practicality of international governance remains mostly speculative. Using evidence gathered from state delegates, climate activists and modellers, we reveal three underlying and clashing ‘geofutures’: an idealised understanding of governable geoengineering that abstracts from technical and political realities; a situated understanding of geoengineering emphasising power hierarchies in world order; and a pragmatist precautionary understanding emerging in spaces of negotiation such as UN Environment Assembly (UNEA). Set in the wider historical context of climate politics, the failure to agree even to a study of geoengineering at UNEA indicates underlying obstacles to global rules and institutions for geoengineering posed by divergent interests and underlying epistemic and political differences. Technology assessments should recognise that geoengineering will not be exempt from international fractures; that deployment of geoengineering through imposition is a serious risk; and that contestations over geofutures pertain, not only to climate policy, but also the future of planetary order

    Carbon-dioxide Removal and Biodiversity: A Threat Identification Framework

    No full text
    Carbon‐dioxide removal (CDR) technologies offer the potential to contribute to the restoration and protection of natural ecosystems, the achievement of development goals and the safeguarding of human wellbeing. However, these technologies can also present risks to biodiversity, particularly those techniques that depend on large‐scale manipulation of ecosystems and earth‐system processes. Debates around the development of these technologies have historically focused on the dichotomy between the need to expand the knowledge base on all options related to emerging technologies, and the concern that research represents a slippery slope to deployment. This paper introduces a new approach to governing CDR research – one based on threat identification. We present a framework for assessing the impacts (positive or negative) on biodiversity and ecosystems from a spectrum of CDR interventions, so as to prioritize research to those CDR options that present minimal threats to biodiversity. Application of the framework indicates that while many CDR interventions present threats to biodiversity, certain options, such as regenerative CDR, may have positive impacts

    Climate engineering: early reflections on a complex conversation

    No full text
    This is a background account and formal statement prepared by participants in the Institute for Advanced Sustainability Studies’ Climate Engineering Summer Course, held between 2 and 17 August 2014 in Potsdam, Germany

    A Precautionary Assessment of Systemic Projections and Promises From Sunlight Reflection and Carbon Removal Modeling

    No full text
    Climate change is a paradigmatic example of systemic risk. Recently, proposals for large-scale interventions—carbon dioxide removal (CDR) and solar radiation management (SRM)— have started to redefine climate governance strategies. We describe how evolving modeling practices are trending toward optimized and “best-case” projections—portraying deployment schemes that create both technically slanted and politically sanitized profiles of risk, as well as ideal objectives for CDR and SRM as mitigation-enhancing, time-buying mechanisms for carbon transitions or vulnerable populations. As promises, stylized and hopeful projections may selectively reinforce industry and political activities built around the inertia of the carbon economy. Some evidence suggests this is the emerging case for certain kinds of CDR, where the prospect of future carbon capture substitutes for present mitigation. Either of these implications are systemic: explorations of climatic futures may entrench certain carbon infrastructures. We point out efforts and recommendations to forestall this trend in the implementation of the Paris Agreement, by creating more stakeholder input and strengthening political real- ism in modeling and other assessments, as well as through policy guardrails
    corecore