8 research outputs found

    Characterization of hiPSC-Derived Muscle Progenitors Reveals Distinctive Markers for Myogenic Cell Purification Toward Cell Therapy

    Get PDF
    骨格筋幹細胞を純化する方法を確立 --筋肉の細胞移植治療の実現に向けて--. 京都大学プレスリリース. 2021-04-02.Enhanced muscle regeneration using stem cells. 京都大学プレスリリース. 2021-04-02.The transplantation of muscle progenitor cells (MuPCs) differentiated from human induced pluripotent stem cells (hiPSCs) is a promising approach for treating skeletal muscle diseases such as Duchenne muscular dystrophy (DMD). However, proper purification of the MuPCs before transplantation is essential for clinical application. Here, by using MYF5 hiPSC reporter lines, we identified two markers for myogenic cell purification: CDH13, which purified most of the myogenic cells, and FGFR4, which purified a subset of MuPCs. Cells purified with each of the markers showed high efficiency for regeneration after transplantation and contributed to the restoration of dystrophin expression in DMD-immunodeficient model mice. Moreover, we found that MYF5 regulates CDH13 expression by binding to the promoter regions. These findings suggest that FGFR4 and CDH13 are strong candidates for the purification of hiPSC-derived MuPCs for therapeutical application

    Long-term maintenance of peripheral blood derived human NK cells in a novel human IL-15- transgenic NOG mouse

    No full text
    Abstract We generated a novel mouse strain expressing transgenic human interleukin-15 (IL-15) using the severe immunodeficient NOD/Shi-scid-IL-2Rγ null (NOG) mouse genetic background (NOG-IL-15 Tg). Human natural killer (NK) cells, purified from the peripheral blood (hu-PB-NK) of normal healthy donors, proliferated when transferred into NOG-IL-15 Tg mice. In addition, the cell number increased, and the hu-PB-NK cells persisted for 3 months without signs of xenogeneic graft versus host diseases (xGVHD). These in vivo-expanded hu-PB-NK cells maintained the original expression patterns of various surface antigens, including NK receptors and killer cell immunoglobulin-like receptor (KIR) molecules. They also contained significant amounts of granzyme A and perforin. Inoculation of K562 leukemia cells into hu-PB-NK-transplanted NOG-IL-15 Tg mice resulted in significant suppression of tumor growth compared with non-transplanted mice. Furthermore, NOG-IL-15 Tg mice allowed for engraftment of in vitro-expanded NK cells prepared for clinical cell therapy. These cells exerted antibody-dependent cell-mediated cytotoxicity (ADCC) on Her2-positive gastric cancer cells in the presence of therapeutic anti-Her2 antibody, and subsequently suppressed tumor growth. Our results collectively suggest that the NOG-IL-15 Tg mice are a useful model for studying human NK biology and evaluating human NK cell-mediated in vivo cytotoxicity

    ALS: A Disease of Motor Neurons and Their Nonneuronal Neighbors

    No full text
    corecore