10,716 research outputs found

    Star Formation and Dust Extinction Properties of Local Galaxies as seen from AKARI and GALEX

    Get PDF
    An accurate estimation of the star formation-related properties of galaxies is crucial for understanding the evolution of galaxies. In galaxies, ultraviolet (UV) light emitted by recently formed massive stars is attenuated by dust, which is also produced by star formation (SF) activity, and is reemitted at mid- and far- infrared (IR) wavelengths. In this study, we investigate the star formation rate (SFR) and dust extinction using UV and IR data. We selected local galaxies which are detected at AKARI FIS 90 um and matched the IRAS IIFSCz 60 um select catalog. We measured FUV and NUV flux densities from GALEX images. We examined the SF and extinction of Local galaxies using four bands of AKARI. Then, we calculated FUV and total IR luminosities, and obtained the SF luminosity, L_{SF}, the total luminosity related to star formation activity, and the SFR. We find that in most galaxies, L_{SF} is dominated by L_{dust}. We also find that galaxies with higher SF activity have a higher fraction of their SF hidden by dust. In fact, the SF of galaxies with SFRs >20 M_{sun}/yr is almost completely hidden by dust. Our results boast a significantly higher precision with respect to previously published works, due to the use of much larger object samples from the AKARI and GALEX all sky surveys.Comment: 9 pages, 12 figures, accepted for publication in Earth, Planets, and Space, A few minor corrections, and a reference adde

    Mid-infrared luminosity as an indicator of the total infrared luminosity of galaxies

    Full text link
    The infrared (IR) emission plays a crucial role for understanding the star formation in galaxies hidden by dust. We first examined four estimators of the IR luminosity of galaxies, L_fir (Helou et al. 1988), L_tir (Dale et al. 2001), revised version of L_tir (Dale & Helou 2002) (we denote L_tir2), and L_ir (Sanders & Mirabel 1996) by using the observed SEDs of well-known galaxies. We found that L_ir provides excellent estimates of the total IR luminosity for a variety of galaxy SEDs. The performance of L_tir2 was also found to be very good. Using L_ir, we then statistically analyzed the IRAS PSCz galaxy sample (Saunders et al. 2000) and found useful formulae relating the MIR monochromatic luminosities [L(12um) and L(25um)], and L_ir. For this purpose we constructed a subsample of 1420 galaxies with all IRAS four band (12, 25, 60, and 100um) flux densities. We found linear relations between L_ir and MIR luminosities, L(12um) and L(25um). The prediction error with 95-% confidence level is a factor of 4-5. Hence, these formulae are useful for the estimation of the total IR luminosity only from 12um or 25um observations. We further tried to make an `interpolation' formula for galaxies at 0<z<1. For this purpose we construct the formula of the relation between 15-um luminosity and the total IR luminosity. We conclude that the 15-um formula can be used as an estimator of the total IR luminosity from 24um observation of galaxies at z \simeq 0.6.Comment: A&A in press, 8 pages, 9 figures, numerical errors correcte

    An investigation of star formation and dust attenuation in major mergers using ultraviolet and infrared data

    Full text link
    Merger processes play an important role in galaxy formation and evolution. To study the influence of merger processes on the evolution of dust properties and cosmic star formation rate, we investigate a local sample of major merger galaxies and a control sample of isolated galaxies using GALEX ultraviolet (UV) and Spitzer infrared (IR) images. Through a statistical study, we find that dust attenuation in merger galaxies is enhanced with respect to isolated galaxies. We find this enhancement is contributed mainly by spiral galaxies in spiral-spiral (S-S) pairs, and increases with the increasing stellar mass of a galaxy. Combining the IR and UV parts of star formation rates (SFRs), we then calculated the total SFRs and specific star formation rates (SSFRs). We find the SSFRs to be enhanced in merger galaxies. This enhancement depends on galaxy stellar mass and the companion's morphology, but depends little on whether the galaxy is a primary or secondary component or on the separation between two components. These results are consistent with a previous study based only on IR images. In addition, we investigate the nuclear contributions to SFRs. SFRs in paired galaxies are more concentrated in the central part of the galaxies than in isolate galaxies. Our studies of dust attenuation show that the nuclear parts of pairs most resemble ULIRGs. Including UV data in the present work not only provides reliable information on dust attenuation, but also refines analyses of SFRs.Comment: 21 pages, 21 figure

    Star formation and dust extinction properties of local galaxies from AKARI-GALEX All-Sky Surveys: First results from most secure multiband sample from FUV to FIR

    Full text link
    The AKARI All-Sky Survey provided the first bright point source catalog detected at 90um. Starting from this catalog, we selected galaxies by matching AKARI sources with those in the IRAS PSCz. Next, we have measured total GALEX FUV and NUV flux densities. Then, we have matched this sample with SDSS and 2MASS galaxies. By this procedure, we obtained the final sample which consists of 607 galaxies. If we sort the sample with respect to 90um, their average SED shows a coherent trend: the more luminous at 90um, the redder the global SED becomes. The M_r--NUV-r color-magnitude relation of our sample does not show bimodality, and the distribution is centered on the green valley between the blue cloud and red sequence seen in optical surveys. We have established formulae to convert FIR luminosity from AKARI bands to the total infrared (IR) luminosity L_TIR. With these formulae, we calculated the star formation directly visible with FUV and hidden by dust. The luminosity related to star formation activity (L_SF) is dominated by L_TIR even if we take into account the far-infrared (FIR) emission from dust heated by old stars. At high star formation rate (SFR) (> 20 Msun yr^-1), the fraction of directly visible SFR, SFR_FUV, decreases. We also estimated the FUV attenuation A_FUV from FUV-to-total IR (TIR) luminosity ratio. We also examined the L_TIR/L_FUV-UV slope (FUV- NUV) relation. The majority of the sample has L_TIR/L_FUV ratios 5 to 10 times lower than expected from the local starburst relation, while some LIRGs and all the ULIRGs of this sample have higher L_TIR/L_FUV ratios. We found that the attenuation indicator L_TIR/L_FUV is correlated to the stellar mass of galaxies, M*, but there is no correlation with specific SFR (SSFR), SFR/M*, and dust attenuation L_TIR/L_FUV. (abridged)Comment: 13 pages, 18 figures, accepted for publication in A&

    Dusty Universe viewed by AKARI far infrared detector

    Full text link
    We present the results of the analysis of multiwavelength Spectral Energy Distributions (SEDs) of far-infrared galaxies detected in the AKARI Deep Field-South (ADF--S) Survey. The analysis uses a carefully selected sample of 186 sources detected at the 90 μ\mum AKARI band, identified as galaxies with cross-identification in public catalogues. For sources without known spectroscopic redshifts, we estimate photometric redshifts after a test of two independent methods: one based on using mainly the optical -- mid infrared range, and one based on the whole range of ultraviolet -- far infrared data. We observe a vast improvement in the estimation of photometric redshifts when far infrared data are included, compared with an approach based mainly on the optical -- mid infrared range. We discuss the physical properties of our far-infrared-selected sample. We conclude that this sample consists mostly of rich in dust and young stars nearby galaxies, and, furthermore, that almost 25% of these sources are (Ultra)Luminous Infrared Galaxies. Average SEDs normalized at 90 μ\mum for normal galaxies (138 sources), LIRGs (30 sources), and ULIRGs (18 galaxies) a the significant shift in the peak wavelength of the dust emission, and an increasing ratio between their bolometric and dust luminosities which varies from 0.39 to 0.73.Comment: 8 pages, 7 figures, published in Earth, Planets and Spac

    [Ultra] Luminous Infrared Galaxies selected at 90 μ\mum in the AKARI deep field: a study of AGN types contributing to their infrared emission

    Get PDF
    The aim of this work is to characterize physical properties of Ultra Luminous Infrared Galaxies (ULIRGs) and Luminous Infrared Galaxies (LIRGs) detected in the far-infrared (FIR) 90um band in the AKARI Deep Field-South (ADF-S) survey. In particular, we want to estimate the AGN contribution to the [U]LIRGs' infrared emission and which types of AGNs are related to their activity. We examined 69 galaxies at z>0.05 detected at 90um by the AKARI satellite in the ADF-S, with optical counterparts and spectral coverage from the ultraviolet to the FIR. We used two independent spectral energy distribution fitting codes: one fitting the SED from FIR to FUV (CIGALE) and gray-body + power spectrum fit for the infrared part of the spectra (CMCIRSED) in order to identify a subsample of [U]LIRGs, and to estimate their properties. Based on the CIGALE SED fitting, we have found that [U]LIRGs selected at the 90um AKARI band compose ~56% of our sample (we found 17 ULIRGs and 22 LIRGs, spanning over the redshift range 0.06<z<1.23). Their physical parameters, such as stellar mass, star formation rate (SFR), and specific SFR are consistent with the ones found for other samples selected at IR wavelengths. We have detected a significant AGN contribution to the MIR luminosity for 63% of LIRGs and ULIRGs. Our LIRGs contain Type 1, Type 2, and intermediate types of AGN, whereas for ULIRGs, a majority (more than 50%) of AGN emission originates from Type 2 AGNs. The temperature--luminosity and temperature--mass relations for the dust component of ADF--S LIRGs and ULIRGs indicate that these relations are shaped by the dust mass and not by the increased dust heating. We conclude that LIRGs contain Type 1, Type 2, and intermediate types of AGNs, with an AGN contribution to the MIR emission at the median level of 13+/-3%, whereas the majority of ULIRGs contain Type 2 AGNs, with a median AGN fraction equal to 19+/-8%.Comment: 24 pages, 21 figures, accepted for publication in Astronomy & Astrophysic

    The infrared emission of ultraviolet selected galaxies from z = 0 to z=1

    Full text link
    We select galaxies in UV rest-frame at z=0, z~0.7 and z~1 together with a sample of LBGs at z~1, the samples are built in order to sample the same range of luminosity at any redshift. The evolution of the IR and UV luminosities with z is analysed for individual galaxies as well as in terms of luminosity functions. The L_IR/L_UV ratio is used to measure dust attenuation. This ratio does not exhibit a strong evolution with z for the bulk of our sample galaxies but some trends are found for galaxies with a strong dust attenuation and for UV luminous sources: galaxies with L_IR/L_UV>10 are more frequent at z>0 than at z=0 and the largest values of L_IR/L_UV are found for UV faint objects; conversely the most luminous galaxies of our samples (L_UV> 2 10^{10} L_sun$), detected at z=1, exhibit a lower dust attenuation than the fainter ones. L_IR/L_UV increases with the K rest-frame luminosity of the galaxies at all the redshifts considered and shows a residual anti-correlation with L_UV. The most massive and UV luminous galaxies exhibit quite large specific star formation rates. LBGs exhibit systematically lower dust attenuation than UV selected galaxies of same luminosity but similar specific star formation rates. The analysis of the UV+IR luminosity functions leads to the conclusion that up to z = 1 most of the star formation activity of UV selected galaxies is emitted in IR. Whereas we are able to retrieve all the star formation from our UV selection at z=0.7, at z = 1 we miss a large fraction of galaxies more luminous than ~ 10^{11} L_sun. The effect is found larger for Lyman Break Galaxies.Comment: 13 pages. accepted for publication (Astronomy and Astrophysics

    AKARI/IRC Broadband Mid-infrared data as an indicator of Star Formation Rate

    Full text link
    AKARI/Infrared Camera (IRC) Point Source Catalog provides a large amount of flux data at {\it S9W} (9 μm9\ {\rm \mu m}) and {\it L18W} (18 μm18\ {\rm \mu m}) bands. With the goal of constructing Star-Formation Rate(SFR) calculations using IRC data, we analyzed an IR selected GALEX-SDSS-2MASS-AKARI(IRC/Far-Infrared Surveyor) sample of 153 nearby galaxies. The far-infrared fluxes were obtained from AKARI diffuse maps to correct the underestimation for extended sources raised by the point-spread function photometry. SFRs of these galaxies were derived by the spectral energy distribution fitting program CIGALE. In spite of complicated features contained in these bands, both the {\it S9W} and {\it L18W} emission correlate with the SFR of galaxies. The SFR calibrations using {\it S9W} and {\it L18W} are presented for the first time. These calibrations agree well with previous works based on Spitzer data within the scatters, and should be applicable to dust-rich galaxies.Comment: PASJ, in pres
    corecore