15 research outputs found

    Forage fish interactions: A symposium on creating the tools for ecosystem-based management of marine resources

    Get PDF
    Forage fish (FF) have a unique position within marine foodwebs and the development of sustainable harvest strategies for FF will be a critical step in advancing and implementing the broader, ecosystem-based management of marine systems. In all, 70 scientists from 16 nations gathered for a symposium on 12–14 November 2012 that was designed to address three key questions regarding the effective management of FF and their ecosystems: (i) how do environmental factors and predator–prey interactions drive the productivity and distribution of FF stocks across ecosystems worldwide, (ii) what are the economic and ecological costs and benefits of different FF management strategies, and (iii) do commonalities exist across ecosystems in terms of the effective management of FF exploitation

    Life in the fast lane: Revisiting the fast growth—High survival paradigm during the early life stages of fishes

    Get PDF
    Early life survival is critical to successful replenishment of fish populations, and hypotheses developed under the Growth-Survival Paradigm (GSP) have guided investigations of controlling processes. The GSP postulates that recruitment depends on growth and mortality rates during early life stages, as well as their duration, after which the mortality declines substantially. The GSP predicts a shift in the frequency distribution of growth histories with age towards faster growth rates relative to the initial population because slow-growing individuals are subject to high mortality (via starvation and predation). However, mortality data compiled from 387 cases published in 153 studies (1971–2022) showed that the GSP was only supported in 56% of cases. Selection against slow growth occurred in two-thirds of field studies, leaving a non-negligible fraction of cases showing either an absence of or inverse growth-selective survival, suggesting the growth-survival relationship is more complex than currently considered within the GSP framework. Stochastic simulations allowed us to assess the influence of key intrinsic and extrinsic factors on the characteristics of surviving larvae and identify knowledge gaps on the drivers of variability in growth-selective survival. We suggest caution when interpreting patterns of growth selection because changes in variance and autocorrelation of individual growth rates among cohorts can invalidate fundamental GSP assumptions. We argue that breakthroughs in recruitment research require a comprehensive, population-specific characterization of the role of predation and intrinsic factors in driving variability in the distribution and autocorrelation of larval growth rates, and of the life stage corresponding to the endpoint of pre-recruited life. -- Keywords : critical period ; growth-mortality ; individual characteristics ; larval physiology ; predation ; recruitment endpoint

    Dynamics of growth-based survival mechanisms in Japanese anchovy Engraulis japonicus larvae

    No full text
    Three growth-based survival mechanisms were tested for multiple cohorts of Japanese anchovy Engraulis japonicus larvae in Sagami Bay. Through otolith microstructure analysis, growth trajectories and histories of samples of the survivors were compared with those of the original populations to examine size- and growth-selective mortality to test the “bigger is better” and “growth-selective predation” mechanisms, respectively. The effects of growth rates on the timing of metamorphosis were examined to test the “stage duration” mechanism. The “bigger is better” and “growth-selective predation” mechanisms were detected to be effective in 2 and 6 of 8 seasonal cohorts, respectively. Results contrary to the “bigger is better” and “growth-selective predation” mechanisms were obtained from 3 and 2 of 8 cohorts, respectively. The “stage duration” mechanism was evaluated to be effective for both of 2 cohorts which were testable. Overall, none of the three mechanisms was universally appropriate for all of the cohorts. The relative contributions of the three mechanisms were dynamic, although the “growth-selective predation” mechanism was identified to be the major one in anchovy larvae in the study site.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Small pelagic fish in the new millennium: A bottom-up view of global research effort

    No full text
    Small pelagic fish (SPF) play extremely important ecological roles in marine ecosystems, form some of the most economically valuable fisheries resources, and play a vital role in global food security. Due to their short generation times and tight coupling to lower trophic levels, populations of SPF display large boom-and-bust dynamics that are closely linked to climate variability. To reveal emerging global research trends on SPF as opposed to more recently published, ecosystem-specific reviews of SPF, we reviewed the literature published in two, 6-year periods in the new millennium (2001–2006, and 2011–2016) straddling the publication of a large, global review of the dynamics of SPF in 2009. We explored intrinsic and extrinsic (bottom-up) factors influencing the dynamics of SPF such as anchovies, sardines, herrings and sprats within the sub-order Clupeidae. Published research efforts within 16 different biogeographic ocean regions were compiled (more than 900 studies) and compared to identify i) new milestones and advances in our understanding, ii) emerging research trends and iii) remaining gaps in knowledge. Studies were separated into 5 categories (field, laboratory, mesocosms, long-term statistical analyses and spatially-explicit modelling) and discussed in relation to 10 bottom-up categories including 5 abiotic factors (temperature, salinity, pH, dissolved oxygen, density), 3 physical processes (advection, turbulence, turbidity) and 2 biotic factors (prey quantity and quality). The peer-reviewed literature reflects changes in the number of studies between the two time periods including increases (Mediterranean Sea, Humboldt Current) and decreases (Australia, Benguela Current). Our review highlights i) gaps in ecological knowledge on young juveniles and, in general, on the impacts of hypoxia and heatwaves on SPF, ii) the utility of paleo studies in exploring population drivers, iii) the continued need to develop spatially-explicit, full life-cycle models, iv) the importance of exploring how density-dependent processes impact vital rates (growth, survival, reproduction), and v) the benefits of international collaboration for knowledge transfer and building unifying hypotheses on the role of bottom-up factors and processes that regulate SPF populations
    corecore