368 research outputs found

    Rapid cosmic-ray acceleration at perpendicular shocks in supernova remnants

    Full text link
    Perpendicular shocks are shown to be rapid particle accelerators that perform optimally when the ratio usu_{\rm s} of the shock speed to the particle speed roughly equals the ratio 1/η1/\eta of the scattering rate to the gyro frequency. We use analytical methods and Monte-Carlo simulations to solve the kinetic equation that governs the anisotropy generated at these shocks, and find, for ηus≈1\eta u_{\rm s}\approx1, that the spectral index softens by unity and the acceleration time increases by a factor of two compared to the standard result of diffusive shock acceleration theory. These results provide a theoretical basis for the thirty-year-old conjecture that a supernova exploding into the wind of a Wolf-Rayet star may accelerate protons to an energy exceeding 1015 10^{15}\,eV.Comment: 12 pages, 2 figures, accepted for publication in Ap

    An Optical Lattice Clock with Spin-polarized 87Sr Atoms

    Full text link
    We present a new evaluation of an 87Sr optical lattice clock using spin polarized atoms. The frequency of the 1S0-3P0 clock transition is found to be 429 228 004 229 873.6 Hz with a fractional accuracy of 2.6 10^{-15}, a value that is comparable to the frequency difference between the various primary standards throughout the world. This measurement is in excellent agreement with a previous one of similar accuracy

    Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks

    Full text link
    We report a vapor-cell magneto-optical trapping of Hg isotopes on the 1S0−3P1{}^1S_0-{}^3P_1 intercombination transition. Six abundant isotopes, including four bosons and two fermions, were trapped. Hg is the heaviest non-radioactive atom trapped so far, which enables sensitive atomic searches for ``new physics'' beyond the standard model. We propose an accurate optical lattice clock based on Hg and evaluate its systematic accuracy to be better than 10−1810^{-18}. Highly accurate and stable Hg-based clocks will provide a new avenue for the research of optical lattice clocks and the time variation of the fine-structure constant.Comment: 4 pages, 3 figure

    Accuracy Evaluation of an Optical Lattice Clock with Bosonic Atoms

    Full text link
    We report the first accuracy evaluation of an optical lattice clock based on the 1S0 - 3P0 transition of an alkaline earth boson, namely 88Sr atoms. This transition has been enabled using a static coupling magnetic field. The clock frequency is determined to be 429 228 066 418 009(32) Hz. The isotopic shift between 87Sr and 88Sr is 62 188 135 Hz with fractional uncertainty 5.10^{-7}. We discuss the conditions necessary to reach a clock accuracy of 10^{-17} or less using this scheme.Comment: 3 pages, 4 figures, uses ol.sty fil

    Ultrastable Optical Clock with Neutral Atoms in an Engineered Light Shift Trap

    Full text link
    An ultrastable optical clock based on neutral atoms trapped in an optical lattice is proposed. Complete control over the light shift is achieved by employing the 5s21S0→5s5p3P05s^2 {}^1S_0 \to 5s5p {}^3P_0 transition of 87Sr{}^{87}{\rm Sr} atoms as a "clock transition". Calculations of ac multipole polarizabilities and dipole hyperpolarizabilities for the clock transition indicate that the contribution of the higher-order light shifts can be reduced to less than 1 mHz, allowing for a projected accuracy of better than 10−17 10^{-17}.Comment: 4 pages, 2 figures, accepted for publication in Phys. Rev. Let

    Possibility of an ultra-precise optical clock using the 61S0→63P0o6 ^1S_0 \to 6 ^3P^o_0 transition in 171,173^{171, 173}Yb atoms held in an optical lattice

    Full text link
    We report calculations designed to assess the ultimate precision of an atomic clock based on the 578 nm 61S0−−>63P0o6 ^1S_0 --> 6 ^3P^o_0 transition in Yb atoms confined in an optical lattice trap. We find that this transition has a natural linewidth less than 10 mHz in the odd Yb isotopes, caused by hyperfine coupling. The shift in this transition due to the trapping light acting through the lowest order AC polarizability is found to become zero at the magic trap wavelength of about 752 nm. The effects of Rayleigh scattering, higher-order polarizabilities, vector polarizability, and hyperfine induced electronic magnetic moments can all be held below a mHz (about a part in 10^{18}), except in the case of the hyperpolarizability larger shifts due to nearly resonant terms cannot be ruled out without an accurate measurement of the magic wavelength.Comment: 4 pages, 1 figur

    Accurate spectroscopy of Sr atoms

    Full text link
    We report the frequency measurement with an accuracy in the 100 kHz range of several optical transitions of atomic Sr : 1S0−3P1^1S_0- ^3P_1 at 689 nm, 3P1−3S1^3P_1- ^3S_1 at 688 nm and 3P0−3S1^3P_0- ^3S_1 at 679 nm. Measurements are performed with a frequency chain based on a femtosecond laser referenced to primary frequency standards. They allowed the indirect determination with a 70 kHz uncertainty of the frequency of the doubly forbidden 5s^2^1S_0- 5s5p^3P_0 transition of 87^{87}Sr at 698 nm and in a second step its direct observation. Frequency measurements are performed for 88^{88}Sr and 87^{87}Sr, allowing the determination of 3P0^3P_0, 3P1^3P_1 and 3S1^3S_1 isotope shifts, as well as the 3S1^3S_1 hyperfine constants.Comment: 12 pages, 16 figure

    A high stability semiconductor laser system for a 88^{88}Sr-based optical lattice clock

    Get PDF
    We describe a frequency stabilized diode laser at 698 nm used for high resolution spectroscopy of the 1S0-3P0 strontium clock transition. For the laser stabilization we use state-of-the-art symmetrically suspended optical cavities optimized for very low thermal noise at room temperature. Two-stage frequency stabilization to high finesse optical cavities results in measured laser frequency noise about a factor of three above the cavity thermal noise between 2 Hz and 11 Hz. With this system, we demonstrate high resolution remote spectroscopy on the 88Sr clock transition by transferring the laser output over a phase-noise-compensated 200 m-long fiber link between two separated laboratories. Our dedicated fiber link ensures a transfer of the optical carrier with frequency stability of 7 \cdot 10^{-18} after 100 s integration time, which could enable the observation of the strontium clock transition with an atomic Q of 10^{14}. Furthermore, with an eye towards the development of transportable optical clocks, we investigate how the complete laser system (laser+optics+cavity) can be influenced by environmental disturbances in terms of both short- and long-term frequency stability.Comment: 9 pages, 9 figures, submitted to Appl. Phys.

    The optical calcium frequency standards of PTB and NIST

    Get PDF
    We describe the current status of the Ca optical frequency standards with laser-cooled neutral atoms realized in two different laboratories for the purpose of developing a possible future optical atomic clock. Frequency measurements performed at the Physikalisch-Technische Bundesanstalt (PTB) and the National Institute of Standards and Technology (NIST) make the frequency of the clock transition of 40Ca one of the best known optical frequencies (relative uncertainty 1.2e-14) and the measurements of this frequency in both laboratories agree to well within their respective uncertainties. Prospects for improvement by orders of magnitude in the relative uncertainty of the standard look feasible.Comment: 13 pages, 11 figures, to appear in Comptes Rendus Physiqu
    • …
    corecore