1,831 research outputs found
Suzaku Observations of Active Galactic Nuclei Detected in the Swift/BAT Survey: Discovery of "New Type" of Buried Supermassive Black Holes
We present the Suzaku broad band observations of two AGNs detected by the
Swift/BAT hard X-ray (>15 keV) survey that did not have previous X-ray data,
Swift J0601.9-8636 and Swift J0138.6-4001. The Suzaku spectra reveals in both
objects a heavily absorbed power law component with a column density of NH =~
10^{23.5-24} cm^{-2} that dominates above 10 keV, and an intense reflection
component with a solid angle >~ from a cold, optically thick medium. We
find that these AGNs have an extremely small fraction of scattered light from
the nucleus, <~ 0.5% with respect to the intrinsic power law component. This
indicates that they are buried in a very geometrically-thick torus with a small
opening angle and/or have unusually small amount of gas responsible for
scattering. In the former case, the geometry of Swift J0601.9-8636 should be
nearly face-on as inferred from the small absorption for the reflection
component. The discovery of two such objects in this small sample implies that
there must be a significant number of yet unrecognized, very Compton thick AGNs
viewed at larger inclination angles in the local universe, which are difficult
to detect even in the currently most sensitive optical or hard X-ray surveys.Comment: 4 pages, 3 figures, accepted for publication in ApJ Lette
The Burst Alert Telescope (BAT) on the Swift MIDEX Mission
The Burst Alert Telescope (BAT) is one of 3 instruments on the Swift MIDEX
spacecraft to study gamma-ray bursts (GRBs). The BAT first detects the GRB and
localizes the burst direction to an accuracy of 1-4 arcmin within 20 sec after
the start of the event. The GRB trigger initiates an autonomous spacecraft slew
to point the two narrow field-of-view (FOV) instruments at the burst location
within 20-70 sec so to make follow-up x-ray and optical observations. The BAT
is a wide-FOV, coded-aperture instrument with a CdZnTe detector plane. The
detector plane is composed of 32,768 pieces of CdZnTe (4x4x2mm), and the
coded-aperture mask is composed of approximately 52,000 pieces of lead
(5x5x1mm) with a 1-m separation between mask and detector plane. The BAT
operates over the 15-150 keV energy range with approximately 7 keV resolution,
a sensitivity of approximately 10E-8 erg*cm^-2*s^-1, and a 1.4 sr (half-coded)
FOV. We expect to detect >100 GRBs/yr for a 2-year mission. The BAT also
performs an all-sky hard x-ray survey with a sensitivity of approximately 2
mCrab (systematic limit) and it serves as a hard x-ray transient monitor.Comment: 18 Pages, 12 Figures, To be published in Space Science Review
Variational Monte Carlo analysis of the Hubbard model with a confining potential: one-dimensional fermionic optical lattice systems
We investigate the one-dimensional Hubbard model with a confining potential,
which may describe cold fermionic atoms trapped in an optical lattice.
Combining the variational Monte Carlo simulations with the new stochastic
reconfiguration scheme proposed by Sorella, we present an efficient method to
systematically treat the ground state properties of the confined system with a
site-dependent potential. By taking into account intersite correlations as well
as site-dependent on-site correlations, we are able to describe the coexistence
of the metallic and Mott insulating regions, which is consistent with other
numerical results. Several possible improvements of the trial states are also
addressed.Comment: 7 pages, 15 figures; removed unnecessary graphs (p.8-p.32 in the old
version are removed
CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) for Near-Perfect Selective Transformation
The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be also applied in vitro to fundamental cloning steps to facilitate efficient plasmid selection for transformation and selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as well as unwanted ligation byproducts resulting in an unprecedented increase in the transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient application to conventional molecular cloning to achieve near-perfect selective transformation
Robust statistics towards detection of the 21 cm signal from the Epoch of Reionization
© 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.
We explore methods for robust estimation of the 21 cm signal from the Epoch of Reionization (EoR). A Kernel Density Estimator (KDE) is introduced for measuring the spatial temperature fluctuation power spectrum from the EoR. The KDE estimates the underlying probability distribution function of fluctuations as a function of spatial scale, and contains different systematic biases and errors to the typical approach to estimating the fluctuation power spectrum. Extraction of histograms of visibilities allows moments analysis to be used to discriminate foregrounds from 21 cm signal and thermal noise. We use the information available in the histograms, along with the statistical dis-similarity of foregrounds from two independent observing fields, to robustly separate foregrounds from cosmological signal, while making no assumptions about the Gaussianity of the signal. Using two independent observing fields to robustly discriminate signal from foregrounds is crucial for the analysis presented in this paper. We apply the techniques to 13 h of Murchison Widefield Array EoR data over two observing fields. We compare the output to that obtained with a comparative power spectrum estimation method, and demonstrate the reduced foreground contamination using this approach. Using the second moment obtained directly from the KDE distribution functions yields a factor of 2-3 improvement in power for k < 0.3 h Mpc-1 compared with a matched delay space power estimator, while weighting data by additional statistics does not offer significant improvement beyond that available for thermal noise-only weights
Spin-Diffusion Lengths in Metals and Alloys, and Spin-Flipping at Metal/Metal Interfaces: an Experimentalist's Critical Review
In magnetoresistive (MR) studies of magnetic multilayers composed of
combinations of ferromagnetic (F) and non-magnetic (N) metals, the magnetic
moment (or related 'spin') of each conduction electron plays a crucial role,
supplementary to that of its charge. While initial analyses of MR in such
multilayers assumed that the direction of the spin of each electron stayed
fixed as the electron transited the multilayer, we now know that this is true
only in a certain limit. Generally, the spins 'flip' in a distance
characteristic of the metal, its purity, and the temperature. They can also
flip at F/N or N1/N2 interfaces. In this review we describe how to measure the
lengths over which electron moments flip in pure metals and alloys, and the
probability of spin-flipping at metallic interfaces. Spin-flipping within
metals is described by a spin-diffusion length,l^M(sf), where the metal M = F
or N. Spin-diffusion lengths are the characteristic lengths in the
current-perpendicular-to-plane (CPP) and lateral non-local (LNL) geometries
that we focus upon in this review. In certain simple cases, l^N(sf) sets the
distance over which the CPP-MR and LNL-MR decrease as the N-layer thickness
(CPP-MR) or N-film length (LNL) increases, and l^F(sf) does the same for
increase of the CPP-MR with increasing F-layer thickness. Spin-flipping at
M1/M2 interfaces can be described by a parameter, delta(M1/M2), which
determines the spin-flipping probability, P = 1 - exp(-delta). Increasing
delta(M1/M2) usually decreases the MR. We list measured values of these
parameters and discuss the limitations on their determinations.Comment: Invited Review, to appear in J. Phys. Cond. Matter. 50 pages, 18
figures. The new version contains additional material and revisions to
improve clarit
3D Protein structure prediction with genetic tabu search algorithm
Abstract Background Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. Results In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. Conclusions The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic algorithm by using the flexible memory functions of TS. Compared with some previous algorithms, GATS algorithm has better performance in global optimization and can predict 3D protein structure more effectively
Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study
<p>Abstract</p> <p>Background</p> <p>In the last two decades robot training in neuromotor rehabilitation was mainly focused on shoulder-elbow movements. Few devices were designed and clinically tested for training coordinated movements of the wrist, which are crucial for achieving even the basic level of motor competence that is necessary for carrying out ADLs (activities of daily life). Moreover, most systems of robot therapy use point-to-point reaching movements which tend to emphasize the pathological tendency of stroke patients to break down goal-directed movements into a number of jerky sub-movements. For this reason we designed a wrist robot with a range of motion comparable to that of normal subjects and implemented a self-adapting training protocol for tracking smoothly moving targets in order to facilitate the emergence of smoothness in the motor control patterns and maximize the recovery of the normal RoM (range of motion) of the different DoFs (degrees of Freedom).</p> <p>Methods</p> <p>The IIT-wrist robot is a 3 DoFs light exoskeleton device, with direct-drive of each DoF and a human-like range of motion for Flexion/Extension (FE), Abduction/Adduction (AA) and Pronation/Supination (PS). Subjects were asked to track a variable-frequency oscillating target using only one wrist DoF at time, in such a way to carry out a progressive splinting therapy. The RoM of each DoF was angularly scanned in a staircase-like fashion, from the "easier" to the "more difficult" angular position. An Adaptive Controller evaluated online performance parameters and modulated both the assistance and the difficulty of the task in order to facilitate smoother and more precise motor command patterns.</p> <p>Results</p> <p>Three stroke subjects volunteered to participate in a preliminary test session aimed at verify the acceptability of the device and the feasibility of the designed protocol. All of them were able to perform the required task. The wrist active RoM of motion was evaluated for each patient at the beginning and at the end of the test therapy session and the results suggest a positive trend.</p> <p>Conclusion</p> <p>The positive outcomes of the preliminary tests motivate the planning of a clinical trial and provide experimental evidence for defining appropriate inclusion/exclusion criteria.</p
Production of Embryonic and Fetal-Like Red Blood Cells from Human Induced Pluripotent Stem Cells
We have previously shown that human embryonic stem cells can be differentiated into embryonic and fetal type of red blood cells that sequentially express three types of hemoglobins recapitulating early human erythropoiesis. We report here that we have produced iPS from three somatic cell types: adult skin fibroblasts as well as embryonic and fetal mesenchymal stem cells. We show that regardless of the age of the donor cells, the iPS produced are fully reprogrammed into a pluripotent state that is undistinguishable from that of hESCs by low and high-throughput expression and detailed analysis of globin expression patterns by HPLC. This suggests that reprogramming with the four original Yamanaka pluripotency factors leads to complete erasure of all functionally important epigenetic marks associated with erythroid differentiation regardless of the age or the tissue type of the donor cells, at least as detected in these assays. The ability to produce large number of erythroid cells with embryonic and fetal-like characteristics is likely to have many translational applications
In Situ Studies of the Primary Immune Response to (4-Hydroxy-3-Nitrophenyl)Acetyl. V. Affinity Maturation Develops in Two Stages of Clonal Selection
To examine the role of germinal centers (GCs) in the generation and selection of high affinity antibody-forming cells (AFCs), we have analyzed the average affinity of (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific AFCs and serum antibodies both during and after the GC phase of the immune response. In addition, the genetics of NP-binding AFCs were followed to monitor the generation and selection of high affinity AFCs at the clonal level. NP-binding AFCs gradually accumulate in bone marrow (BM) after immunization and BM becomes the predominant locale of specific AFCs in the late primary response. Although the average affinity of NP-specific BM AFCs rapidly increased while GCs were present (GC phase), the affinity of both BM AFCs and serum antibodies continued to increase even after GCs waned (post-GC phase). Affinity maturation in the post-GC phase was also reflected in a shift in the distribution of somatic mutations as well as in the CDR3 sequences of BM AFC antibody heavy chain genes. Disruption of GCs by injection of antibody specific for CD154 (CD40 ligand) decreased the average affinity of subsequent BM AFCs, suggesting that GCs generate the precursors of high affinity BM AFCs; inhibition of CD154-dependent cellular interactions after the GC reaction was complete had no effect on high affinity BM AFCs. Interestingly, limited affinity maturation in the BM AFC compartment still occurs during the late primary response even after treatment with anti-CD154 antibody. Thus, GCs are necessary for the generation of high affinity AFC precursors but are not the only sites for the affinity-driven clonal selection responsible for the maturation of humoral immune responses
- …