3,150 research outputs found

    Chiral phase transition at high temperature and density in the QCD-like theory

    Get PDF
    The chiral phase transition at finite temperature T and/or chemical potential μ\mu is studied using the QCD-like theory with a variational approach. The ``QCD-like theory'' means the improved ladder approximation with an infrared cutoff in terms of a modified running coupling. The form of Cornwall-Jackiw-Tomboulis effective potential is modified by the use of the Schwinger-Dyson equation for generally nonzero current quark mass. We then calculate the effective potential at finite T and/or μ\mu and investigate the phase structure in the chiral limit. We have a second-order phase transition at Tc=129T_c=129 MeV for μ=0\mu=0 and a first-order one at μc=422\mu_c=422 MeV for T=0. A tricritical point in the T-μ\mu plane is found at T=107 MeV, μ=210\mu=210 MeV. The position is close to that of the random matrix model and some version of the Nambu-Jona-Lasinio model.Comment: 10 pages, 6 figures. Accepted for publication in Physical Review

    Rotor vibration caused by external excitation and rub

    Get PDF
    For turbomachinery with low natural frequencies, considerations have been recently required for rotor vibrations caused by external forces except unbalance one, such as foundation motion, seismic wave, rub and so forth. Such a forced vibration is investigated analytically and experimentally in the present paper. Vibrations in a rotor-bearing system under a harmonic excitation are analyzed by the modal technique in the case of a linear system including gyroscopic effect. For a nonlinear system a new and powerful quasi-modal technique is developed and applied to the vibration caused by rub

    Queue lengths and workloads in polling systems

    Get PDF
    We consider a polling system: a queueing system of N1N\ge 1 queues with Poisson arrivals Q1,...,QNQ_1,...,Q_N visited in a cyclic order (with or without switchover times) by a single server. For this system we derive the probability generating function Q()\mathscr Q(\cdot) of the joint queue length distribution at an arbitrary epoch in a stationary cycle, under no assumptions on service disciplines. We also derive the Laplace-Stieltjes transform W()\mathscr W(\cdot) of the joint workload distribution at an arbitrary epoch. We express Q\mathscr Q and W\mathscr W in the probability generating functions of the joint queue length distribution at visit beginnings, Vbi(){\mathscr V}_{b_i}(\cdot), and visit completions, Vci(){\mathscr V}_{c_i}(\cdot), at QiQ_i, i=1,...,Ni=1,...,N. It is well known that Vbi{\mathscr V}_{b_i} and Vci{\mathscr V}_{c_i} can be computed in a broad variety of cases. Furthermore, we establish a workload decomposition result

    Generic phase diagram of "electron-doped" T' cuprates

    Full text link
    We investigated the generic phase diagram of the electron doped superconductor, Nd2-xCexCuO4, using films prepared by metal organic decomposition. After careful oxygen reduction treatment to remove interstitial Oap atoms, we found that the Tc increases monotonically from 24 K to 29 K with decreasing x from 0.15 to 0.00, demonstrating a quite different phase diagram from the previous bulk one. The implication of our results is discussed on the basis of tremendous influence of Oap "impurities" on superconductivity and also magnetism in T' cuprates. Then we conclude that our result represents the generic phase diagram for oxygen-stoichiometric Nd2-xCexCuO4.Comment: 12 pages, 4 figures; International Symposium on Superconductivity (ISS) 200

    Comparative investigation of the coupled-tetrahedra quantum spin systems Cu2Te2O5X2, X=Cl, Br and Cu4Te5O12Cl4

    Full text link
    We present a comparative study of the coupled-tetrahedra quantum spin systems Cu2Te2O5X2, X=Cl, Br (Cu-2252(X)) and the newly synthesized Cu4Te5O12Cl4 (Cu-45124(Cl)) based on ab initio Density Functional Theory calculations. The magnetic behavior of Cu-45124(Cl) with a phase transition to an ordered state at a lower critical temperature Tc_c=13.6K than in Cu-2252(Cl) (Tc_c=18K) can be well understood in terms of the modified interaction paths. We identify the relevant structural changes between the two systems and discuss the hypothetical behavior of the not yet synthesized Cu-45124(Br) with an ab initio relaxed structure using Car-Parrinello Molecular Dynamics.Comment: 2 pages, 1 figure; submitted to Proceedings of M2S-HTSC VIII, Dresden 200

    Inversion of the Diffraction Pattern from an Inhomogeneously Strained Crystal using an Iterative Algorithm

    Full text link
    The displacement field in highly non uniformly strained crystals is obtained by addition of constraints to an iterative phase retrieval algorithm. These constraints include direct space density uniformity and also constraints to the sign and derivatives of the different components of the displacement field. This algorithm is applied to an experimental reciprocal space map measured using high resolution X-ray diffraction from an array of silicon lines and the obtained component of the displacement field is in very good agreement with the one calculated using a finite element model.Comment: 5 pages, 4 figure

    Iterative Perturbation Theory for Strongly Correlated Electron Systems with Orbital Degeneracy

    Get PDF
    A new scheme of the iterative perturbation theory is proposed for the strongly correlated electron systems with orbital degeneracy. The method is based on the modified self-energy of Yeyati, et al. which interpolates between the weak and the strong correlation limits, but a much simpler scheme is proposed which is useful in the case of the strong correlation with orbital degeneracy. It will be also useful in the study of the electronic structures combined with the band calculations.Comment: 6 pages, 3 Postscript figures, to appear in J. Phys. Cond. Matte

    Commensurate structural modulation in the charge- and orbitally-ordered phase of the quadruple perovskite (NaMn3_3)Mn4_4O12_{12}

    Full text link
    By means of synchrotron x-ray and electron diffraction, we studied the structural changes at the charge order transition TCOT_{CO}=176 K in the mixed-valence quadruple perovskite (NaMn3_3)Mn4_4O12_{12}. Below TCOT_{CO} we find satellite peaks indicating a commensurate structural modulation with the same propagation vector q =(1/2,0,-1/2) of the CE magnetic order that appears at low temperature, similarly to the case of simple perovskites like La0.5_{0.5}Ca0.5_{0.5}MnO3_3. In the present case, the modulated structure together with the observation of a large entropy change at TCOT_{CO} gives evidence of a rare case of full Mn3+^{3+}/Mn4+^{4+} charge and orbital order consistent with the Goodenough-Kanamori model.Comment: Accepted for publication in Phys. Rev. B Rapid Communication

    Generalized Numerical Renormalization Group for Dynamical Quantities

    Full text link
    In this paper we introduce a new approach for calculating dynamical properties within the numerical renormalization group. It is demonstrated that the method previously used fails for the Anderson impurity in a magnetic field due to the absence of energy scale separation. The problem is solved by evaluating the Green function with respect to the reduced density matrix of the full system, leading to accurate spectra in agreement with the static magnetization. The new procedure (denoted as DM-NRG) provides a unifying framework for calculating dynamics at any temperature and represents the correct extension of Wilson's original thermodynamic calculation.Comment: 4 pages RevTeX, 6 eps figures include

    Irreversible and reversible modes of operation of deterministic ratchets

    Full text link
    We discuss a problem of optimization of the energetic efficiency of a simple rocked ratchet. We concentrate on a low-temperature case in which the particle's motion in a ratchet potential is deterministic. We show that the energetic efficiency of a ratchet working adiabatically is bounded from above by a value depending on the form of ratchet potential. The ratchets with strongly asymmetric potentials can achieve ideal efficiency of unity without approaching reversibility. On the other hand we show that for any form of the ratchet potential a set of time-protocols of the outer force exist under which the operation is reversible and the ideal value of efficiency is also achieved. The mode of operation of the ratchet is still quasistatic but not adiabatic. The high values of efficiency can be preserved even under elevated temperatures
    corecore