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SUMMARY

For turbomachinery with low natural frequencies, considerations have been
recently required for rotor vibrations caused by external forces except unbalance
one, such as foundation motion, seismic wave, rub and so forth. Such a forced
vibration is investigated analytically and experimentally in the present paper.

Vibrations in a rotor-bearing system under a harmonic excitation are analyzed by
the modal techique in the case of a linear system including gyroscopic effect. For a
nonlinear system a new and powerful quasi-modal technique is developed and applied to
the vibration caused by rub.

From the above analyses the following results are derived.

1. In a high speed rotor, two resonances of a forward whirl motion and backward one
are induced under a directional external excitation, because of large gyroscopic
effect. Although rub of rotor usually causes instability, it is possible to
stabilize the rotor vibration by selecting a rubbing stopper suitable to each
resonance severity.

2. In a low speed rotor such as a vertical pump with small gyroscopic effect, a
response is a directional vibration within limits of no rubbing. However, when a
rotor begins to rub, a directional respose changes to a stable forward whirl
motion due to the nonlinearity in the water bearing.

These analytical results characterized by gyroscopic effect and bearing _
nonlinearity are confirmed by excitation tests of a high speed spin rotor and a pump
model rotor, respectively.

1. INTRODUCTION

Many studies deal with vibration responses for some kinds of excitation in
structure dynamics. However, a response of rotor under external excitation shows
different features of motion from that of structure, i.e. forward whirl motion and
backward whirl motion at each resonance. Some papers (ref. 1, 2) describe such a
response of a rigid rotor.

In this paper, a general description of a forced vibration in linear rotor-
bearing system is given and a rub vibration induced by contact between a rotor and a
stator is also included in the discussion on nonlinear rotor dynamics.

Two kinds of rotors are selected for the study of rub vibration. The one is a
rotor with high speed rotation and large gyroscopic effect. The stopper effect for
the suppression of a rotor vibration due to rub is discussed. The other is a pump
model rotor with low speed rotation and water lubricated bearings. Nonlinearity of a
water bearing and rub vibration of a journal are considered.
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SYMBOLS

B”, Bif; modal quantum in state equation
Cg ; gyroscopic matrix
C& ; modal gyro
Ce, Cp ; complex type of damping matrix
Cij (i,J = x,y) ; damping matrix
F external force
imaginary unit J-1

e we ws ws e

i
I4 ; transverse moment of inertia of a disk
Ip ; polar moment of inertia of a disk
K¢, Kp ; complex type of stiffness matrix
Kij (1,3 = x,y) ; stiffness matrix
K ; stiffness of stopper with a clearance
K* ; modal stiffness
m ; mass of a disk
M ., M'; mass matrix , modal mass
S, 8§ ; normal coordinate
t ; time
Qz = Q¢ + iQy ; nonlinear restoring force
Z = X + iY ; rotor absolute displacement
2o = Xg + 1Y, ; foundation absolute displacement
Z = 1 - 25 ; rotor relative displacement
S ; clearance
$= - od/1xt ; modal damping ratio C/Cec
Ay Ax ; complex eigenvalue
Hi friction factor
V ; excitation frequency
¢,¢i ; eigen vector
w , Wy ,» @p ; natural frequency in rotation
Wn ; natural frequency in no rotation

S¢ ; rotational speed

2. EQUATION OF MOTION AND MODE SEPARATION

2.1 Equation of Motion in Rotor-Casing System

The equation of motion on a coordinate system fixed in the space is derived for
entire system including a rotor, bearings and casing, as shown in Fig.1. The system
is discretized by a beam model along longitudinal axis with % -direction.
Representing the absolute displacements at each location of a rotor with X and Y and
that of a casing with x and y , the equation of motion is given as follows

M X ~RC3Y + Kax ( X=%o) + Kay (Y- )+ Cax (X=-Zo) +Cay (Y-%o) = @x -
M'Y.‘*QC'})'( t Kyx (X=-20)+ Kgg (Y-%)+Cox ( X~-%o) +Cyy(Y-Yo) = Qg

where Qy and Qy are nonlinear restoring forces.
A complex numbered type of displacement is introduced here for the sake of
convenience of description.

Z =X + 1Y Zo:x0+iyo (2)
Since the acceleration Eo (t) of the foundation of the casing is usually measured, the
equation (1) is rearranged to obtain the acceleration excitation of foundation.

Applying relative displacement zzZ-zZ,, where the rotor motion is measured with
respect to the casing motion, the following equation of motion is obtained from Eq.(1).
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MZ +(RC)2 +Kp2+KeE + CpinCd =-ME-(RG & Q2 2F (3)

This formula is fundamental for the study of vibration under seismic excitation in
rotor dynamics.

In the formula, the second term with the coefficient of rotational speed & shows
gyroscopic effect which exists only in a rotor system. The matrices M and Cg consist
of inertias of each disk on a shaft in the following forms.

M =~ didgondl (---m, Ta---)
G = ﬂidjorub/ (-0, Tp-)

Therefore, if the casing moves in a parallel way with acceleration & z{Jd,, 8, =0],
excitation force, stated on the righthand side of Eq.(3), reduces to only inertia
force M2, of mass as usual, On the other hand, if the casing is rocking in a non-
parallel way with 2=[d,, 8,1, an additional force - 8, adds up the excitation
force. That is a gyroscopic moment which is proportiondl to a polar moment of
inertia of disks and rotational speed.

(4)

2.2 Response at Each Mode

Table 1 is utilized to derive the modal response at each mode based upon
orthogonality of eigensolution. There are two columns I and II in Tab.1. One of
them concerns with a rotor system suspended vertically and the other one with a
horizontally suspended rotor system. The former one indicates a free motion with a
circular whirl and the latter one indicates a motion with an elliptical whirl. This
classification is due to symmetry or asymmetry in bearing dynamic properties.

For each case, it is assumed that eigensolution of free equation of motion
indicated in the line No.3 of table 1 is given by the formula as shown in the line
No.4. The corresponding eigenvalue problem is obtained, and orthogonality condition
is guaranteed in the forms given by the line No.8.

Therefore, by using these eigensolutions of free yibration, it is possible to
separate a general response into each mode response on normal coordinate system.
From a physical system with symmetrical bearings of I in Tab.1 to a normal coordinate
system, the modal transformation is defined by the relationship as follows.

220§ o Ppls = (P]S (5)
The state equation with normal coordinate resulted by post-transformation becomes
. . t
S -ASi = — _/‘_d}i
37 .
B["—' “Af¢ctM ¢L’ +¢(ZK¢¢- —> Bf:' —-/LZM’*K %WzM*'"K*

The normal transformation for a system with asymmetrical bearing of II in tab.1 is
also derived by the same manner.

(6)

where

3. HARMONIC FOUNDATION EXCITATION

3.1 Harmonic Excitation
The external force in the equation of motion Eq.(3) becomes

F=-MZ2 -G 2 (7

where the harmonic acceleration in a certain direction e.g., fixed at X-axis
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Zo= & ws b (8)

is substituted into Eq.(7). Then, the external force is defined as following
exponential expression.

. ot

- e a vt _ S a P gy
F——(M+TC7)'—2—’€ ——(M > ?)—é‘e

Movements of the foundation in parallel and rocking motions are generally included in
the amplitude a of an acceleration. As usual, in the case of no rocking motion the
external force is simplified into the following formula.

-t (9%)

- a _ vt a
F=-r Se™_mMF e
As the one directional force acts upon the rotor, it is equivalent to two whirling
forces expressed by exponential form, with forward component (Y and backward component
- - -

Now, suppose that an eigenvalue A= -~o+iw (w>0) with a rotor in rotation is
obtained, a resonance occurs when excitation frequency V comes close to a natural
frequency i i.e., yxWw . On the other hand, the conjugate value X=-«-iw does not
become an eigenvalue in rotor system, because of gyroscopic effect. So no resonance
appears at the condition of -pY % -w. Therefore, it is clear that only one of the two
whirl forces contributes to a resonance.

Each whirl force, divided from one directional harmonic force, has half of the
magnitude of one directional force. Then the rotor response on a resonance, while in
rotation, is reduced to about half of the amplitude, compared with the one with no
rotation.

3.2 Features of Response

Some features appearing in the response are summarized for a vertically suspended
rotor here. A modal response correspond}ng to an eigenvalue and also to an eigen
vector is obtained by substituting Eq.(9) into Eq.(6).

t vt -t
M A a A a gt
sa)- 2 . —e +——" = (10)
3x v -iA 2 -y -A 2
[1] Forward Whirl Resonance; As the condition y>wy with the relationship

between eigenvalue,k=-4+iu}and exciting frequency  , a forward whirl resonance
becomes remarkably large as described in the first part of Eq.(10).
t 2 ¢ (VL -270°
St~ o ¢KT — 2 e ( ’ (11)
[+ a)f/w,f 253
The phase relationship between rotor position and exponential exciting force is
shown in Fig.3, for three instances of pre, on and post resonance when the excitation
frequency is swept. The phase lag of rotor behind the force is 270 deg. when just on
a resonance in the X-direction. And it is less than 270 deg. at pre-resonance and
more than 270 deg. at post~resonance.
[2] Backward whirl Resonance; When the relationship between eigenvalueA=-¥-cwyg
and excitation frequency y approaches the range of -Lh:-a¢, the rotor response
becomes a backward resonance, as described in the second part of Eq.(10).
(1 -c{( vl -270°
s ~ - 2 - gty
K !+ u)b/w: AS
The phase lag of rotor behind the force is 270 deg. when just on a resonance. And it

is changing from less than 270 deg. to more than 270 deg. through the resonance as
shown in Fig.l4.
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[3] Whirl Motion; The rotor has two eigenvalues which correspond to a mode
shape. These values are different from conjugate relation and are independent from
each other. Here the forward natural frequency is higher than the backward one.

Therefore, when rotating the rotor at a high speed, the response whirl motion is
changing from left to right as shown in Fig.5, corresponding with increase of
excitation frequency. At the beginning the backward resonance occurs with a circular
orbit, and later on through elliptical orbits the forward resonance appears again
with a circular whirl orbit. On the boundary line, between forward direction and
backward direction, an elliptical whirl orbit becomes a straight line thus whirl
direction can be interchanged.

(4] Low Gyroscopic Effect; In the case of low gyroscopic effect such as low
rotational speed or small disks, forward eigenvalue and backward one corresponding to
an eigen mode are not independent of each other, and they approach to a conjugate
relation. The typical state such as low gyroscopic effect leads to dynamics of
nonrotational rotor. Eigenvalues maintain conjugate form, for example,

AK = A Aker = X
Resonance response is described by the following form
I P S D S b (13)
sit) x — —« - o
2 K LY - Ly

such that rotor, vibrating only in X-direction, coincides with the direction of the
acting force without a whirl motion.

3.3 Harmonic Respose Curve

Figure 8 shows the response curve under harmonic excitation. In the case of S
=0 i.e., no rotation, a resonance peak appears. On the other hand, at high speed
rotation two resonance peaks appear with backward whirl and forward whirl. The
separation of a peak into two peaks is due to gyroscopic effect or rotor rotation.
This figure is described by nondimensional frequency and amplitude, which are normal-
ized by the values of the resonance frequency and amplitude at no rotation,
respectively. The peak at the forward resonance is less than the half of the peak
at the resonance in no rotation, because of @4 /ww Z21in Eq. (11). On the other hand,
the peak at the backward is more than the half of that, because ofzubhg < 1in Eq.
(12). Therefore it is clear that these two peak amplitudes reduce to about half of
the amplitude at no rotation and the backward amplitude is slightly higher than
the forward one.

4. SEISMIC EXCITATION

Instead of equation of motion in physical coordinate system, the state equation
in normal coordinate system is used for analysis of time history response caused by
seismic excitation. 1In Eq.(6), an arbitrary external force

F:—Mé',,—rgzcjiéo (14)

is defined by insertion of the acceleration é} measured in the field. Substitution of
Eq.(14) into Eq.(6) and integration of the resulting equation gives time history
response of rotor in normal coordinate system. In order to return the normal response
to the response in physical system the following relationship is used:

2= T P Si(t) (15)
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5. SEISMIC EXCITATION WITH NONLINEAR SYSTEM

Here we discuss a rotor vibration induced by seismic excitation which becomes
larger than the clearance between a rotor and a stopper. In such situation the rotor
begins to contact the stopper fixed on the casing.

In this rub vibration, the response on normal coordinate system is given by
Eq.(6) and the external force is defined as follows.

F=-mMZ, - L'_Qcig.o + Qg © o (16)

The force Qz is a nonlinear restoring force generated by the contact of a rotor with
a stopper. The two types of configuration of a cylindrical stopper are mentioned
here.

(1) Type I contact between an outer surface of a rotor and an inner surface of a
stopper i.e., a rotor in a stopper
(2) Type II contact between an inner surface of a rotor and an outer surface of a

stopper i.e., a stopper in a rotor
The types I and II here are called an outer contact and an inner contact with respect
to the rotor.
Representing the stiffness of a stopper; the clearance between a rotor and a
stopper and the friction factor with K, § and # , respectively, the nonlinear restoring
force is defined as follows.

- = + for outer contact type (17)
Qz Fr Fo - for inner contact type

Fr--k(i2l-8)2/12]

and [, - M Fr sign (angular velocity of contact face on rotor)

where

In the simulation of a nonlinear vibration caused by rub, the second term in
Eq.(17) indicates an unstable friction force which induces a whirl motion. Therefore,
to suppress the rotor vibration by a cylindrical stopper, the outer type of a stopper
is more effective in a rotor with higher forward resonance severity. On the other
hand, the inner type of a stopper is more effective with higher backward resonance
severity.

For the response history analysis in such a nonlinear system a quasi-modal
technique is effective, and a hybrid integration method based upon it is developed,
as described in Appendix.

6. EXCITATION TEST OF HIGH SPEED ROTOR

6.1 Harmonic Excitation

The features of a rotor response excited by a harmonic wave, stated in the
previous chapters, are reconfirmed by an experiment in which the rotor shown in Fig.7
is used. The rotor rotates in very high speed, and it has large gyroscopic effect.
The rotor is suspended by bearings at both sides. The vibration mode with a low
natural frequency is the conical mode in which the right side of the rotor vibrates
with the nodal point in the left side.

The vibration response waveform, the response curve and the Lissajous figure of
rotor motionare presented in Fig.8, including a harmonic waveform with the excitation
frequency Y. When the rotor does not rotate, the rotor vibration response is one

directional and the resonance frequency agree with the natural frequency a)n in a
structure i.e., V =& = 4,95 Hz. '
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Under a rotation of the rotor, two resonance peaks in the rotor response appear
in the backward and forward resonances at the excitation frequency Y = 0.66w, and
Y = 1.21wy, respectively. The peak amplitude severity Q at the backward resonance
becomes about half of the peak amplitude severity Q = 156 Pm/gal at the resonance
of the rotor with no rotation. The other one at the forward resonance is about one
fifth of Q,. The calculated values of the resonance frequency and peak amplitude
severity, as shown in Fig.5, well coincide with these experimental values.

6.2 Rub Vibration

An aseismic stopper with a fine gap is installed in the rotor system with large
gyroscopic effect, as schematically shown in Fig.7. This stopper is not a usual
circular type, but one directional type with a clearance of x-direction as shown in
(i) of Fig.6.

Figure 9 shows vibration history response and its Lissajous figure of the rotor
subjected to a seismic wave. The magnitude of excitation acceleration increases in
turn by (A), (B) and (C). In the case of (A), excitation acceleration is so small
that the rotor moves in the clearance with no rub and nearly circular whirl orbit.

In the case of (B) and (C) rubs occur. Comparing the case (C) with the case (B) a
larger acceleration causes a stronger rub between the rotor and the stopper, close to
an impact.

In the rotor system with large gyroscopic effect, the vibration of a rotor is
always generated in a circular whirl motion by an external force in one direction.
Then, vibration is satisfactorily suppressed by even one directional stopper at an
arbitrary phase location, as demonstrated in this numerical simulation. One
directional stopper is rather preferable than a circular stopper, because the duration
of rub in the former is less than one in the latter and the corresponding friction
force which induces unstable vibration becomes less.

The effect of the stopper upon vibration suppression is indicated in Fig.10.

The horizontal axis shows the maximum value of the acceleration in the seismic wave,
normalized by the value in which the rotor begins to rub with the stopper. The
perpendicular axis gives the value of the displacement in the response, normalized
by the clearanced . The stable suppression of the rotor vibration is seen in the
range of about five times of the acceleration at the beginning of rub in Fig. 10.
This numerical result proves a good agreement with the corresponding experimental
result.

7. EXCITATION TEST OF PUMP MODEL ROTOR

7.1 Outline of Experiment

Figure 11 shows the outline of the experimental equipment which is simplified
into a vertically suspended pump model rotor for atomic power plant. The experimertal
rotor has two disks and two bearings. A self-centering ball bearing is used at
the upper part and water is filled in the cylindrical water bearing located at the
lower part. Two weights are added to the lower part of the rotor. An aseismic
support is located at the lowest part of the casing in order to prevent large
vibration of the casing.

The pump model rotor is vertically located on a shaking table which can stand
the load of 294 kN (30 tons). The excitation wave is sinusoidal one in this test.
In this measurement system, the usual way is employed, except for a load cell with
strain gages to measure the dynamic force in the lower water bearing.

7.2 Natural Frequency
The experimental rotor is discretized by beam element and a calculation model is

obtained as shown in Fig.11. Natural frequencies and corresponding mode shapes are
represented in Tab.2 and Fig.12,respectively.
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From the calculation results considering virtual mass effect (Ref.3) of water
and assuming water bearing stiffness of 9.8 MN/m (10® kgf/mm) natural frequencies are
13.6 Hz and 18.0 Hz. With the stiffness of 39.2 kN/m (4.0 kgf/mm), they are 14.9
Hz, 6.4 Hz and 27.6 Hz. The former stiffness is picked up to simulate the contact
of the journal with the stator of bearing under the condition of large journal
vibration, and the latter one is equivalent to the stiffness of water bearing under
the condition of small journal vibration. In the latter, the rotor vibrates
remarkably in the first and second mode and the casing in the tirst mode.

The comparison of calculation values of natural frequency with experimental
ones is presented in Tab.2. The first natural frequency of 6.4 Hz in calculation
agrees well with the experimental value of 7.0Hz. Concerning the casing mode, a
good agreement is also obtained by comparison between the calculation value of
13.6 ~14.9 Hz and the experimental value of 14.0 Hz.

With respect to the second natural frequency of rotor mode, the experimental
value of 18~ 20 Hz is negligibly different from the calculation value of 27.6 Hz
under the assumption of no contact within small journal vibration. However, in the
case of large stiffness i.e., assuming a contact in the bearing, this experimental
value becomes close to the value obtained by the calculation. From these compar-
isons, it is estimated that the restoring torce with a hard type of nonlinearity
due to a contact is induced in a water lubricated bearing, and the large journal
vibration increases the bearing stiffness.

The first mode resonance does not appear remarkably in the excitation test
because of very high modal damping ratio.

As stated above, the good agreement of natural frequencies between the
calculation and the experiment suggests the reasonable modeling of the pump rotor
system, including dynamics in the water bearing.

7.3 Rotation Test

A rotation test is done before an excitation test. 1In this test the casing is
tightly fixed by the aseismiec support with no clearance. The vibration of the rotor
itself is seen in the amplitude response curve in Fig.13. The first unbalance
resonance appears at the rotational speed of 7~ 8 rps.

The second resonance varies greatly with the unbalance. In the case of a small
unbalance, the second resonance peaks occur at the rotational speed of 17~ 19 rps.
It changes to 20 rps when a large unbalance is applied to the rotor. It is noticed
that the peak amplitude becomes very sharp in this case.

The large unbalance induces a large amplitude of vibration such that the rotor
moves in a large whirl orbit in the clearance of the bearing, and the rub often
occurs. Consequently the increase of the stiffness and the decrease of the damping
effect at the bearing are induced by a large whirl motion and they lead to a sharper
amplitude and a higher resonance frequency. In fact the scratches of rub can
be seen when opening the bearing. :

The comparison between amplitude responses in the rotation test and in the
harmonic excitation test with no rotation is described in Fig.13 and 14. Both
response curves are very different from each other. In the excitation test, only one
high peak appears at the excitation frequency of about 18 Hz. 1Its response curve is
similar to the unbalance response curve with large unbalance.

Therefore, it can be said that this excitation acceleration of 0.1 G seems
to be small in value, but it has a large influence on the rotor vibration. From the
fact, an actual pump rotor with low load capacity in the water bearing is very
sensitive to an external excitation. This fact indicates the necessity of aseimic
design for a pump rotor suspended vertically,
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7.4 Harmonic Excitation Test
Influence of some parameters on a rotor response is examined by sweeping of a
harmonic excitation frequency.
(1) Influence of Clearance in Water Bearing
The displacement of the rotor vibration is shown in Fig.14 by changing the
bearing clearance of 0.127 mm and 0.381 mm. Here, the casing is fixed by the
aseismic stopper with no clearance. In case of 0.127 mm (normal specification),
the resonance occurs at the excitation frequency of 18.5 Hz and its peak
amplitude reaches up to the value of 760 pm. With the clearance of 0.381 mm,
the corresponding peak amplitude is 580 p#m. As shown in the response curve with
the clearance of 0.381 mm, larger clearance results in high damping effect which
reduces the peak amplitude, and it produces a curve which shows true nonlinear

phenomena due to a hard spring.

(2) Influence of Rotor Rotation with Fixed Casing

A harmonic excitation test is done at each rotational speed with the casing
being fixed. The rotor response and dynamic bearing load, including the
responses in X and Y direction, are summarized in Figs.15.

When the rotor is rotating and is subjected to harmonic excitation,
Y-direction vibration appears in addition to X-directional vibration. This
result indicates that a rotor response is a whirl motion, in spite of the
extremely small gyroscopic effect in the pump rotor against the fact as mentioned
in paragraph 3.2. It is seen that the hydraulic force in a fine clearance and
the rub force due to larger journal vibration cause a whirling agitation for a
rotor.

From these graphs, it is clear that an increase in rotational speed
decreases the response peak amplitude and the dynamic bearing load in X-direction,
However, the peak amplitude and the bearing load increase in Y-direction. When
a rotor is in rotation, the sum of vibration responses in both directions
becomes in balance with the power of external force. Then, it is clear that a
rotor with no rotation is most sensitive to an external force and the rotation
reduces such sensitivity.

Although two peaks are seen in a response curve just like influence
of gyroscopic effect, it is not clear why the separation of a peak appears in
spite of the rotor with an extremely small gyroscopic effect.

7.5 Whirl Orbit due to Rub

The response waveforms and whirl orbits of the journal motion at a resonance in
the sweeping test are given in Fig.16. The one directional orbit at the no rotation
changes into a circular whirl orbit with rotation due to rub. Therefore, the waveform
of the bearing load at the rotation contains the ordinary harmonic component plus

the spiky peak component due to rub.

7.6 Simulation of Rub Vibration

A dynamic model of the water bearing is assumed by a nonlinear relationship
between the journal of displacement and the restoring force, as described in Fig.17.
The nonlinear stiffness K is extremely greater than the linear stiffness Kg,
like a hard type of spring.

The numerical result given in Fig.18 simulates a resonance in the harmonic
sweeping test. The journal vibration is suppressed by the bearing clearance, but the
Y-directional vibration occurs simultaneously near the resonance. The waveform of
the bearing load is nearly harmonic. High spiky peak is superposed on the harmonic
one at the instance of rub, like projections on the waveform of bearing load.
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The whirl orbits obtained in the calculation of history response are shown in
Fig.19. At no rotation of 0 rps, one directional vibration is generated, coinciding
with the excitation direction. A whirl motion is induced by rub at the rotation of
24 rps.

Comparing Fig.19 with Fig.16, the calculated whirl orbit at no rotation agrees
with the experimental one. With respect to results at 24 rps, they are different
from each other. The experimental whirl orbit is nearly circular and the
calculation one closes to be rectangular. The disagreement may be attributed
to the fact that a whirling force, generated in a fine gap when the Journal rubs
with the stator in the water bearing, and an unbalance force which actually exists
are neglected in the calculation.

The comparison of the bearing load between the experiment and calculation is
given in Fig.20. The horizontal axis shows the value assumed by a nonlinear stiffness
K. Generally speaking, good agreement is seen with respect to the harmonic component
and the spiky peak component in the bearing load waveform.

8. CONCLUSIONS

Conclusions summarized in this study are as follows.

(1) The modal technique is acceptable for the vibration analysis in a linear system
with rotor, casing and bearings under an external excitation, and the division
of the vibration response at harmonic excitation into each component of
eigen modes is achieved. On the other hand, for the nonlinear vibration
analysis, a new technique called quasi-modal is developed, and a hybrid
integration method based on it is presented. The effectiveness of the new
method is proved by numerical simulations of vibration due to such rub and
nonlinearity in a water bearing.

(2) The peak amplitudes at a backward resonance and a forward resonance under a
harmonic excitation when rotating a rotor in high speed are reduced to about
half of the peak amplitude at no rotation. It is also proved that the
backward resonance severity is slightly greater than the forward one. These
general features of rotor response at a harmonic excitation are made clear in
relation to gyroscopic effect.

(3) The selection of a stopper for the suppression of rotor vibration i.e., inner
or outer type, depends upon which response severity is greater between a
backward resonance and a forward one. It is verified by calculation and
experiment that one directional stopper is rather stable and effective for the
suppressioniof rotor vibration in the system with large gyroscopic effect, .
compared with a cylindrical type of stopper as usually used.

(4) Very high response sensitivity of vertically suspended rotor such as a pump to
external excitation and rub becomes experimentally clear, including the
depen@ence on bearing clearance and rotational speed.

(5) ;n gplte of very small gyroscopic effect in a pump rotor, the rotor response
indicates a whirl motion due to rub and nonlinearity in a water bearing. The
response of bearing dynamic load contains a ordinary harmonic component and a
spiky component in waveforms. It is demonstrated that these experimental values
of bearing load can be estimated by the calculation assuming a dynamic model of
a water bearing with clearance.
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TABLE 1. - DAMPED EIGENVALUE ANALYSIS OF ROTOR-BEARING SYSTEM

1

{l

SYSTEM

Circular Whirl Orbit with Symmetric Support
Vertically Suspended Rotor

Eliptical Whirl Orbit with Asymmetric Support
Horizontally Suspended Rotor

DYNAMIC PROPERTIES
OF BEARING

ko =Ky  Key™= —Kyx
C=Cyy Cry™ —Cyx

M2 +iQCo2 +(Ca ~iCc)2 + (Ka~iKcj2 =F

M2 +iQCo2 + Cit + Coz + Kz + Ko =F

EQUATION OF MOTION =Kom ikom | Korthey ] [ F—keny e L
here Ki=Kg— iKc [ 7 |+l Kp 2 ]“[ + ]
Cp-ca—icc-[c"+°ﬂ]+i[°";°"] cb_[c"—ca]*i[cp4cq]
EIGEN SOLUTION z=got z=¢1 011+ & o [ & [>1 ¢at
M 0 o
EIGENVAL a-[" , ] =[M =[Bi8B:1g [-MO)g [00] 0=|%
UE PROBLEM 0 Ka-ike =" 8=55 | 2= 0 K |8 0k ® e
ABo=AQ i iCc Kg—iK. “
A=[mc,+c_¢-:cc i c] =[ArA:] , _[i9Ce+Ci K Co K
o ABWeA'E Ka-iKec P) A [7227] A,_[ s 'al] “"'[KZ g
MATRIX B A symmetric D
EIGENVALUE A=a+iq Damped Frequency=q  Modal Damping = —a/ /a*+q?
ORTHOGONALITY =0 =0 fori%j =0 = i*®j
'8 . j . =0 for i%j
CONDITION i {*0 oA {#O for i=j 89 {*o FiAS {#O for i=j
B°(3—[1]8) = [A)Mod(&)+F B4(8—[1]8) = () {Mod( ¢ {) F + Mod (¥ ) + F)
FORCED VIBRATION where z=Z 45, for imt2n whete 1=X(, 3 +%,%) for imt~2n
=Mod(4)+s =Mod(e,)s + Mod(3,)-¥

TABLE 2, - COMPARISON OF NATURAL FREQUENCIES
vibration Mode
CASING ROTOR
1-sT 1-ST Z2-ND
[tem Comment
Natural Frequency, H2
EXPERIMENT
Impulse response 14.0 Hit casing
Unbalance response 14.0 7 17-19
Harmonic excitation 14.0 No peak 18-20 Rotation N = 20 rps
CALCULATION
Water bearing (linear) 14.9 6.4 27.6 Bearing stiffness
= 4.0 kgf/mm
= 3% kN/m {no rub)
water bearing (nonlinear)j 13.6 18.0 Bearina stitfness
= 109 xgf/mm
= 9.8 MN/m (with rub)
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APPENDIX

Time History Response Analysis of Nonlinear Rotor-Bearing System
by Quasi-Modal Technique

1. INTRODUCTION

In structure dynamics with many degrees of freedom of motion, time history
response analysis involves two integration methods. One of them is direct inte-
gration and the other is modal. Generally speaking, the former is accurate, but
not convenient for large structure systems because too much computatlonal time is
required. The latter is effective due to the great reduction of freedom of motion by
the normal transformation, but its accuracy depends how many eigen vectors are
introduced in the modal matrix. Each integration method inevitably contains its
own advantagés and disadvantages.

These methods are also applied for non stationary rotor vibration analysis in
rotor dynamics as well as in analyzing the gyroscopic effect and large damping force
in bearings. The authors have already presented the special form of the orthogonality
condition in rotor dynamics and the modal integration technique for analyzing non-
stationary vibration of a rotor in a system with linearity or somewhat weak non-
linearity.

In many cases, the modal technique is more convenient and powerful than the
direct one. However, even the modal technique is not perfect and is inconvenient for
time history response analysis in a rotor-bearing system with strong nonlinear
boundary conditions.

However,in our experience it is very difficult to numerically simulate such a
vibration mode -changing due to rubbing- by the modal integration technique,which
guarantees only a linear system, and not a nonlinear one. The modal technique is
limited to linear analysis and its forcible application to a nonlinear system is
essentially unreasonable.

In this study a new method,which is exclusively applied for nonlinear analysis
is developed on the basis of modal synthesis and the substructure method. A quasi-
modal transformation is defined considering gyroscopic force and damping force
for a general rotor system. The integration method is then introduced by the quasi-
modal technique.

NOMENCLATURE

B : matrices after the quasi modal transformation
C : damping matrix
c* . equivalent damping coefficient for the inner system
Cg*: gyroscopic matrix
Cg : equivalent gyroscopic effect for the inner system
F=[F1,Q2]t = : external force
Fq(t) : external force acting upon the inner system
Fg : force on the quasi modal coordinate system
i= AT : imaginary unit
K : stiffness matrix
k* . equivalent stiffness for the inner system
M : mass matrix
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Q(zo,zp,t) : resistance force acting upon the boundary point
S:[s1,sgv,32d]t: state vector on the quasi-modal coordinate system
S1 : weighting value corresponding to ¢ mode
Spq=z2 @ weighting value corresponding to ¢ mode,i.e.rotor dis-
placement of the boundary point
Spoy=zp : weighting value corresponding to & mode,i.e.rotor velocity
of the boundary point
t : time
z:[z1,22]t : rotor displacement vector in a complex form (z=x+iy)
Z1 : rotor displacement vector of the inner system
Zp : rotor displacement of the boundary point
§ : deflection mode generated by the forced displacement
A=o+iq : complex eigenvalue

£ : deflection mode generated by the forced velocity
d : matrix of the quasi-modal transformation
¢ : eigen mode of the inner system
Yy : eigen mode of the entire system including the inner system
and the boundary point
Q : rotational speed
dij + Dirac's function

2.  QUASI-MODAL TRANSFORMATION

Equation of motion

This study deals with the rotor vibration in an entire system, including
bearings and disks,as shown in Fig.1. The rotor displacement is measured on the
coodinate system of O-XYE which is fixed in the space. The complex form of the rotor
displacement is denoted here by z=x+iy for the displacements in the X-direction and
Y-direction of x and y, respectively. The equation of motion of a rotor is written
as:

MzZ+1 QCgé+Kfz+Kb2+Cf2+Cbi:F (1)
This equation represents the elliptical whirl motion of a rotor supported by general
bearings with asymmetrical dynamic properties. In the case of the circular whirl

motion due to symmetrical dynamic properties,
where

kxx-_-kyy kxy=—kyx CXX:ny ny=-Cy'x y
the equation of motion becomes little simpler, and can be written as:

MZ+iQ Cg2+Kz+Ci:F (2)
To simplify the description, the vibration of a vertically suspended rotor with
symmetrical bearing dynamics is studied first and a new quasi-modal technique is
presented. This technique is also extended to general rotor vibration including

asymmetrical bearing dynamics, but the explanation is omitted in this paper.

Discrimination of boundary point and inner system

The cantilever type of rotor, as shown in Fig.2, is selected in order to
clearly explain the concept of this new technique. In this rotor system, the left
side is a fixed point which is clearly a boundary location. A bearing with non-
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linearity is located on the right side of the rotor. It is assumed that the bearing

dynamic properties are not constant.

This rotor system is a typical example of a system having one changing boundary
condition. The right side is thus designated as a nonlinear boundary point, denoted
by zp. The rest of the rotor system is designated as a linear inner system, and
its displacement vector is denoted by zj.

A resistance force of Qp acts upon the boundary point, and an external force
of Fq is distributed on the inner system of the rotor.

The equation of motion (2) is rewritten, inserting displacements zq and z»,

as :
M1 0 {lzq Cg1 0 |[21] [K11 Kagljz1| €1 O [|Z1] |F1(t)
+iQ = . = F (3)
0 Mz 0 Cgo||z2] [K21 K2gl|z2] 0 C2l|22| |Q(z2,22,t)

Where, subscripts 1 and 2 mean the inner system and the boundary point, respectively.

Transformation modes

An arbitrary vibration mode shape in the system with a changing boundary
condition can be arranged by the synthesis of three kinds of special mode shapes, as
shown in Fig.3. The quasi-modal transformation matrix thus consists of the three
modes: ¢ , § and £ . The first two modes, ¢ and § , are used in the conventional
methods, called the substructure technique or modal synthesis. The third mode,
£ ,is introduced in this study for the first time and its necessity is emphasized.

¢_mode

This is the complex eigen mode of the restricted system on the boundary point,
as shown Fig.3(a). It is obtained by damped eigenvalue solving with respect to the

M1-Cg1-K11-C1 system.
The equation of motion of the inner system becomes

M1Z1+1Q Cg121+K1121+C121=0 (4)

and the free vibration solution is assumed to be given by the following formula with
the ¢ mode,

z= ¢e kt~ (5)
The orthogonality condition with respect to these eigen vectors is derived as:
(X5 05]t[-M1 0 b Ak
:(Sjk
¢ 3] 0 Knf|ox

o (6)
A5 3 Lt i Cg1+C1 K11 |[dk Mk

-

3] K11 0| ¢k

§ mode

This is the deflection mode when the rotating shaft is subject to forced
displacement on the boundary point,as shown in Fig.3(b). Under a load Qo¥*, the
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relationship between the shaft stiffness and the displacement is expressed as:

K11 K12/|21 0 )
= . T
K21 Kpp||22 Q

where Z1= § is the deflection mode

and Zo>=1 is the forced displacement on the boundary point. This load is equivalent
to the shaft stiffness, when the inner system is viewed from the nonlinear boundary
point, and is determined by the following relationship,

kK* = Q" = K1p 6+ Kop (8)

£ mode

This is the deflection mode when the rotating shaft is subject to forced
velocity on the nonlinear boundary point, as shown in Fig.3(c). This mode shape has
not been used heretofore.

Under a load Qo*, which generates the forced velocity, the relationship in-
cluding the gyroscopic force and the damping force up to the first-order differ-
ential equation of Eq.(3) becomes

1Q2Cg1+Cy 0 |iz1]l |K11 K12|lz1] |O
+ = (9)
0  1iQCg+Collzn| |Ko1 Kopl|z2| |Q2%
Assuming the deflection of a nonlinear boundary point with
Zo=1 Zo=t, (10)
the deflection mode shapes of the inner system with the form
Z1=8 , Z1= 8 t+ & (11)
are determined by the following relationship
£ =i§2gg+ € (12)
where,
£g= K1171 Cg1 8= K117 CgiK11~1 Ky
Ec= -K1171C1 8= K171 C1 K111 Kqp
Furthermore, this load Qo* is equal to the sum of equivalent gyroscopic effect

cg* and equivalent damping coefficient c¥*,when the inner system is viewed from the
boundary point. The latter values are determined by the following formulas :

Cg*=Cg2+ $ th1 $ (13)
c* =Co+ stCqy (14)
Where,

Qz*zk*t+i82cg*+c*
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It is obvious in Eq.(12) that the £ mode is generated by the gyroscopic force,
reflecting the spin effect of the rotor, and by strong damping forces in the bearings.
Thus these three modes must be considered in analyzing rotor dynamics. For ordi-
nary structure dynamics, however, the third mode is not needed for the vibration
analysis of nonrotating structures with negligible damping forces. This is why the
conventional modal synthesis techniques applied to structure dynamics employ only
the eigen mode ¢ of a restricted system and the deflection mode 6 at a forced dis-
placement. The new technique presented here for analyzing rotor dynamics is thus
based upon a more general concept, and includes the usual substructure and modal
synthesis techniques as well as the £ mode.

Transformation of coordinate system

, The quasi-normal transformation matrix is defined by analogy with the modal
transformation, as follows :

7 Zq X 80 |s1
= ZZ = 0 10 = ¢8
z| |21 ¢ £ §|soy (15)
Zp 0 0 1]syg

The equation of motion of Eq.(2) is rewritten using a state equation :

M 0f[z] =[iaCgC K|[2]4+[-F

| 0 K|z K 0|z 0 (16)

Putting the transformation relationship of Eq.(15) into the state equation of Eg.
(16), and premultiplying the transposed matrix of the transformation matrix ¢ , a

simple differential equation with respect to the quasi-modal coordinate of s vector
is obtained as :

B3=As-Fg (17)
where,
s=[s1,82y,524]%
B11B12 0 Ayp 0 0 ox YRy
B=|BpiBpp 0 | A=|0 iqcg*+e® k*| Fgz| stF1+Qp
o 0o k* 0 K* 0 0

The structures of the transformed matrices B and A of Eq.(17) are shown in
Fig.4. The matrices Bjjand Aq1 contain zero elements in the off-diagonal part,
because the eigen vectors of the linear inner system are orthogonal with each other,
and these matrices become diagonal. The rest of B matrix,Bqip=Bpit is equal to
the nonzero elements because there is no orthogonality in the relationship between
eigen vector ¢ and deflection modes § and ¢ . All off-diagonal elements of the
coefficient matrices B and A are not zero,but many parts of them are.Consequently,
this transformation can not give a theoretically perfect diagonalization of the
transformed matrices, it does facilitate almost perfect diagonalization with non-zero
elements at the edge of matrix B. This transformation technique is much closer to the
modal one ; hence we call it the quasi-modal technique.

It should be noted that the almost perfect diagonalization with the non-zero
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edge can not be accomplished without the £ mode. That is why we introduce the £ mode
for this new quasi-modal technique.

In state equation (17) obtained by a quasi-modal transformation, the state
vector s contains physical coordinates of Zp=spy and zs=spq, corresponding to
the velocity and displacement on the boundary point, respectively. And the resistance
force Qo on the boundary point is also included in the force vector Fg without
being reformed. These quantities related to the boundary point are maintained by the
same description in the physical coordinate system. Therefore,the superposing oper-
ation is guaranteed after the quasi-normal transformation, as in the same manner as
the FEM operation.

The degree of state equation (17) is equal to the degree of the modal transfor-
mation for the linear inner system plus twice the number of boundary points. Conse-
quently the scale of the problem is greatly reduced,as compared with Eq.(3) or
Eq.(17).

3.  TIME HISTORY RESPONSE ANALYSIS

Hybrid Integration

The integration of the state equation (17) on the quasi-modal coordinate system
gives the time history response under an external excitation Fq(t).

The vector sq of the quasi-modal vector s indicates the weighted values cor-
responding to the eigen modes of the inner coordinate system. Thus, it can be said
that the inner system is processed by the well known modal integration method.

On the other hand, the remaining elements of spy and Spq4 in the quasi-modal
vector s equal the physical coordinates with the relationship

z22=Spq  22=82y (18)

Thus, the boundary points are handle by physical quantities even in post-transfor-
mation, and are easily processed by the direct integration method.

Therefore, integration with respect to the quasi-modal coordinate s is equiva-
lent to hybrid integration where modal and direction methods are mixed, as shown
in Fig.5. The two conventinal methods have their own advantages and disadvantages,
but the advantages of both methods are guaranteed in this new method. Thus the
new technique is highly applicable to nonlinear vibration response analysis.
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Figure 1, - Rotor-bearing system,
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