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Chiral phase transition at high temperature and density in the QCD-like theory
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The chiral phase transition at finite temperatureT and/or chemical potentialm is studied using the QCD-like
theory with a variational approach. The ‘‘QCD-like theory’’ means the improved ladder approximation with an
infrared cutoff in terms of a modified running coupling. The form of the Cornwall-Jackiw-Tomboulis effective
potential is modified by the use of the Schwinger-Dyson equation for a generally nonzero current quark mass.
We then calculate the effective potential at finiteT and/orm and investigate the phase structure in the chiral
limit. We have a second-order phase transition atTc5129 MeV for m50 and a first-order one atmc

5422 MeV for T50. A tricritical point in theT-m plane is found atT5107 MeV, m5210 MeV. The
position is close to that of the random matrix model and some version of the Nambu–Jona-Lasinio model.

PACS number~s!: 11.10.Wx, 11.15.Tk, 11.30.Rd, 12.38.Lg
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I. INTRODUCTION

At zero temperature and zero~baryon number! density,
chiral symmetry in quantum chromodynamics~QCD! is dy-
namically broken. It is generally believed that at sufficien
high temperature and/or density the QCD vacuum underg
a phase transition into a chirally symmetric phase. This c
ral phase transition plays an important role in the physics
neutron stars and the early universe and it may be realize
heavy-ion collisions. At finite temperature the lattice simu
tion is powerful for studying the chiral phase transition
finite temperature (TÞ0). It is now developing also for a
finite chemical potential (mÞ0). However, effective theorie
of QCD are still useful for various nonperturbative pheno
ena including the phase transition.

Recently, it has been argued that the importance of
study of the phase structure, especially a position of the
critical point, has been pointed out in Ref.@1#. The Nambu–
Jona-Lasinio~NJL! model @2# in which the interaction is
induced by instantons and the random matrix model@3# have
shown almost the same results concerning the tricrit
point. It is also interesting to study the possibility of a col
superconducting phase at high baryon density@2,4–8#. How-
ever, we may neglect this phase in the high-temperature
gion where we found the tricritical point. In this paper, w
concentrate on the chiral phase transition betweenSU(Nf)L
3SU(Nf)R andSU(Nf)L1R using the effective potential an
the QCD-like theory. One usually studies the phase struc
of QCD in terms of the Schwinger-Dyson equation~SDE! or
the effective potential@9–13#. However, the use of the SDE
only is not sufficient for its study in particular when there
a first-order phase transition; then, we use the effective
tential. The QCD-like theory provided with the effective p
tential for composite operators and the renormalization gr
is successful in studying the chiral symmetry breaking
QCD @14,15#. This type of theory is occasionally calledQCD
in the improved ladder approximation. The phase diagram in
the QCD-like theory has been studied in Refs.@9,11,13#.
However, the position of the tricritical point is largely diffe
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ent from that obtained from the NJL model and the rand
matrix model.

In this paper we use a modified form of the Cornwa
Jackiw-Tomboulis~CJT! effective potential@16# which is
convenient for a variational approach. The formulation
given for the case where the chiral symmetry is explici
broken at zero temperature and density. We then conside
CJT effective potential in the improved ladder approximati
at finite temperature and/or density. Being motivated
Refs. @2,3#, we reexamine the chiral phase transition a
phase structure in the chiral limit.

This paper is organized as follows. In Sec. II we form
late the effective potential for composite operators and
tend it to finite temperature and density. In Sec. III we fi
determine the value ofLQCD by a conditionf p593 MeV at
T5m50 and then calculate the effective potential at finiteT
and/or m numerically. Using those results, we study t
phase structure in theT-m plane. Section IV is devoted to th
conclusion. We fix the mass scale by the conditionLQCD
51, except for Sec. III.

II. EFFECTIVE POTENTIAL
FOR THE QUARK PROPAGATOR

A. CJT effective potential at zero temperature and density

At zero temperature and zero density, the CJT effect
potential for QCD in the improved ladder approximation
expressed as a functional ofS(p) the quark full propagator
@17#:

V@S#5V1@S#1V2@S#, ~1!

V1@S#5E d4p

~2p!4i

3Tr$ ln@S0
21~p!S~p!#2S0

21~p!S~p!11%, ~2!

V2@S#52
i

2
C2E E d4p

~2p!4i

d4q

~2p!4i
ḡ2~p,q!

3Tr@gmS~p!gnS~q!#Dmn~p2q!, ~3!
©2000 The American Physical Society08-1
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whereC25(Nc
221)/(2Nc) is the quadratic Casimir operato

for the colorSU(Nc) group,S0(p) is the bare quark propa
gator, ḡ2(p,q) is the running coupling of one-loop orde
Dmn(p) is the gluon propagator~which is diagonal in the
color space!, and ‘‘Tr’’ refers to Dirac, flavor, and color
matrices. The two-loop potentialV2 is given by the vacuum
graph of the fermion one-loop diagram with one-gluon e
change~see Fig. 1!.

After Wick rotation, we use the following approximatio
according to Higashijima@17# and Miransky@18#:

ḡ2~pE ,qE!5u~pE2qE!ḡ2~pE!1u~qE2pE!ḡ2~qE!. ~4!

In this approximation and in the Landau gauge, no renorm
ization of the quark wave function is required@19# and the
CJT effective potential is expressed in terms ofS(pE), the
dynamical mass function of a quark:

V@S~pE!#5V1@S~pE!#1V2@S~pE!#, ~5!

V1@S~pE!#522EL d4pE

~2p!4
ln

S2~pE!1pE
2

m2~L!1pE
2

14EL d4pE

~2p!4

S~pE!@S~pE!2m~L!#

S2~pE!1pE
2

, ~6!

V2@S~pE!#526C2ELEL d4pE

~2p!4

d4qE

~2p!4

ḡ2~pE ,qE!

~pE2qE!2

3
S~pE!

S2~pE!1pE
2

S~qE!

S2~qE!1qE
2

. ~7!

FIG. 1. Two-particle irreducible graph which contributes toV2.
10500
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Here, an overall factor~the number of light quarks times th
number of colors! is omitted andm(L) is the bare quark
mass. In the above equations we temporarily introduced
ultraviolet cutoff L in order to make the bare quark ma
well defined.

The extremum condition forV with respect toS(pE)
leads to the following SDE for the quark self-energy:

S~pE!5m~L!13C2EL d4qE

~2p!4

ḡ2~pE ,qE!

~pE2qE!2

S~qE!

S2~qE!1qE
2

.

~8!

In the Higashijima-Miransky approximation, since the arg
ment of the running coupling has no angle dependence,
first perform the angle integration. As a result, we underst
that the procedure is achieved equivalently by replac
(pE2qE)22 by u(pE2qE)(pE

2)211u(qE2pE)(qE
2)21 in

Eq. ~8!. Then we can reduce Eq.~8! to the following differ-
ential equation@14#:

S~pE!

S2~pE!1pE
2

5
~4p!2

3C2

d

pE
2dpE

2 S 1

D~pE!

dS~pE!

dpE
2 D , ~9!

and the two boundary conditions

1

D~pE!

dS~pE!

dpE
2 U

pE50

50, ~10!

S~pE!2
D~pE!

D~pE!

dS~pE!

dpE
2 U

pE5L

5m~L!, ~11!

where the functions

D~pE!5
ḡ2~pE!

pE
2

~12!

and

D~pE!5
d

dpE
2
D~pE!, ~13!

are introduced.
Substituting Eqs.~8! and ~9! into Eqs. ~6! and ~7!, we

obtain
V@S~pE!#522EL d4pE

~2p!4
ln

S2~pE!1pE
2

m2~L!1pE
2

12EL d4pE

~2p!4

S~pE!@S~pE!2m~L!#

S2~pE!1pE
2

522EL d4pE

~2p!4
ln

S2~pE!1pE
2

m2~L!1pE
2

1
2~4p!2

3C2
EL d4pE

~2p!4
@S~pE!2m~L!#

d

pE
2dpE

2 S 1

D~pE!

dS~pE!

dpE
2 D

522EL d4pE

~2p!4
ln

S2~pE!1pE
2

m2~L!1pE
2

2
2

3C2
EL2

dpE
2 1

D~pE! S d

dpE
2

S~pE!D 2

1VS , ~14!
8-2
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CHIRAL PHASE TRANSITION AT HIGH TEMPERATURE . . . PHYSICAL REVIEW D 62 105008
where we used a partial integration in the last line and

VS5F~L!2F~0!,

F~pE!5
2

3C2
@S~pE!2m~L!#

1

D~pE!

dS~pE!

dpE
2

. ~15!

Hereafter we consider the effective potential in the co
tinuum limit (L→`). Let us begin by evaluatingF(L) us-
ing the running coupling

ḡ2~pE!5
2p2a

ln pE
2

, a[
24

11Nc22nf
, ~16!

and the corresponding asymptotic form of the mass func
@19#:

S~pE!→m~L!S ln pE
2

ln L2D 2a/2

1
s

pE
2 ~ ln pE

2 !a/221, ~17!

wherenf is the number of flavors which controls the runnin
coupling. Throughout this paper, we putNc5nf53, namely,
a58/9. The parameters is related to the order parameter
the chiral symmetrŷ q̄q& as

s52
2p2a^q̄q&

3
. ~18!

When the chiral symmetry is exact, i.e.,m(L)50, using
Eqs.~16! and~17!, we can easily show thatF(L) vanishes in
the continuum limit, i.e., limL→`F(L)50. As for F(0),
since we introduce infrared finite running coupling and m
function in Eqs.~20! and~21!, we can setF(0)50. After all,
in the continuum limit, we getVS50 and the modified ver-
sion of the CJT effective potential is obtained as@15,20#

V@S~pE!#522E d4pE

~2p!4
ln

S2~pE!1pE
2

pE
2

2
2

3C2
E dpE

2 1

D~pE! S d

dpE
2

S~pE!D 2

. ~19!

We can also show thatVS50, namely, Eq.~19! holds for
nonzero bare quark mass@21#.

A few comments are in order.
~1! The extremum condition for Eq.~19! with respect to

S(pE) leads to Eq.~9! which is equivalent to the origina
equation ~8! in the Higashijima-Miransky approximatio
apart from the two boundary conditions. We will take a
count of these conditions when we introduce the trial m
function.

~2! In the chiral limit, Eq.~19! is the same as the expre
sion given in Refs.@15,20#. However, even if the chiral sym
metry is explicitly broken, we can use the same express
for V @21#. We do not require thefinite renormalization
adopted in Ref.@15#.
10500
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Now we are in a position to introduce a modified runni
coupling and a trial mass function. We use the followi
QCD-like running coupling@14#:

ḡ2~pE!5
2p2a

ln~pE
21pR

2 !
, ~20!

wherepR is a parameter to regularize the divergence of
QCD running coupling atp51(LQCD). This running cou-
pling approximately develops according to the QCD ren
malization group equation of one-loop order, while
smoothly approaches a constant aspE

2 decreases.
Hereafter we consider the chiral limit, i.e., them(L)50

case. Corresponding to the QCD-like running coupling,
SDE with the two boundary conditions suggests the follo
ing trial mass function@14#:

S~pE!5
s

pE
21pR

2 @ ln~pE
21pR

2 !#a/221, ~21!

wheres is the same as before.
Using Eqs.~20! and~21!, we can expressV@S(pE)# as a

function of s, the order parameter. A further discussion
the CJT effective potential and the dynamical chiral symm
try breaking in QCD-like theory at zero temperature and d
sity can be found in Refs.@14,15#.

B. Effective potential at finite temperature and density

In this subsection we discuss the effective potential
finite temperature and density. In order to calculate the
fective potential at finite temperature and density, we ap
the imaginary time formalism@22#

E dp4

2p
f ~p4!→T (

n52`

`

f ~vn1 im! ~nPZ!, ~22!

wherevn5(2n11)pT is the fermion Matsubara frequenc
and m represents the quark chemical potential. In additi
we need to define the running coupling and the~trial! mass
function at finiteT and/orm. We adopt the following real
functions forDT,m(p) andST,m(p):

DT,m~p!5
2p2a

ln~vn
21p21pR

2 !

1

vn
21p2

, ~23!

ST,m~p!5
s

vn
21p21pR

2 @ ln~vn
21p21pR

2 !#a/221. ~24!

In Eq. ~23! we do not introduce them dependence in
DT,m(p). The gluon momentum squared is the most natu
argument of the running coupling at zero temperature
density, in the light of the chiral Ward-Takahashi identi
@23#. Then it is reasonable to assume thatDT,m(p) does not
depend on the quark chemical potential.

As concerns the mass function, we use the same func
as Eq.~21! except that we replacep4 with vn . As already
noted in Sec. II A, the quark wave function does not suf
8-3
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the renormalization in the Landau gauge forT5m50, while
the same does not hold for finiteT and/orm. However, we
assume that the wave function renormalization is not
quired even at finiteT and/orm, for simplicity.

Furthermore, we neglect theT-m dependent terms in th
quark and gluon propagators which arise from the pertur
tive expansion. We expect that the phase structure is no
affected by these approximations.

Using Eqs.~23! and ~24!, it is easy to write down the
effective potential at finite temperature and chemical pot
tial ~see the Appendix!. Assuming the mean-field expansio
the effective potential can be expanded as a power serie
s with finite coefficientsa2n(T,m):

V~s;T,m!5a2~T,m!s21a4~T,m!s41•••. ~25!

Once we know the value ofsmin , the location of the
minimum ofV, we can determine the value of^q̄q& using the
following relation:

^q̄q&52T(
n
E d3p

~2p!3
Tr ST,m~p!, ~26!

whereST,m(p) is the quark propagator at finiteT and/orm in
our approximations and ‘‘Tr’’ refers to Dirac and color m
trices. However, in this paper, we still determine the^q̄q&
through the relation̂ q̄q&52(3/2p2a)smin . We have con-
firmed that this relation works well even at finiteT and/orm.

III. CHIRAL PHASE TRANSITION AT
HIGH TEMPERATURE AND DENSITY

In our numerical calculation, as mentioned before, we
Nc5nf53. Furthermore, since it was known that the qua
tities such aŝ q̄q& and f p are quite stable under the chan
of the infrared regularization parameter@10#, we fix tR

[ ln(pR
2/LQCD

2 ) to 0.1 and determine the value ofLQCD by the
condition f p593 MeV at T5m50. We approximately re-
producef p using the Pagels-Stoker formula@24#:

f p
2 54NcE d4pE

~2p!4

S~pE!

@S2~pE!1pE
2 #2 S S~pE!2

pE
2

2

dS~pE!

dpE
2 D ,

~27!

and obtainLQCD5738 MeV. The value ofLQCD is almost
the same as the one obtained in the previous paper@12# in
which we used Eqs.~6! and ~7!.

A. TÅ0,µÄ0 case

Figure 2 shows theT dependence of the effective pote
tial at m50. We can realize thatsmin , the minimum of the
effective potential, continuously goes to zero as the temp
ture grows. Thus we have a second-order phase transitio
Tc5129 MeV. Figure 3 shows the temperature depende
of 2^q̄q&1/3.
10500
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B. TÄ0,µÅ0 case

Figure 4 shows them dependence of the effective pote
tial at T50. For small values ofm, the absolute minimum is
nontrivial. However, we find that the trivial and the no
trivial minima coexist atm5422 MeV. For larger values o
m, the energetically favored minimum moves to the orig
Thus we have a first-order phase transition atmc
5422 MeV. Figure 5 shows the chemical potential depe
dence of2^q̄q&1/3. The chiral condensate vanishes disco
tinuously atm5mc .

C. TÅ0,µÅ0 case

In the same way as the previous two cases, we determ
the critical line on theT-m plane~see Fig. 6!. The position of
the tricritical point ‘‘P’’ is determined by the condition

FIG. 2. The effective potential at finite temperature and z

chemical potential.V̄ is defined byV̄524p3V and all quantities are
taken to be dimensionless. The curves show the casesT/LQCD

50,0.15,0.2.

FIG. 3. The temperature dependence of2^q̄q&1/3 at m50.
8-4
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a2~TP ,mP!5a4~TP ,mP!50, ~28!

in Eq. ~25!. Solving this equation, we have

~TP ,mP!5~107,210! MeV.

We have variedtR from 0.1 to 0.3 in order to examine thetR
dependence of the position ofP. As a result, for instance, we
have

~TP ,mP!5~104,207! MeV for tR50.2

5~101,208! MeV for tR50.3.

We note that the value ofLQCD has been determined atT
5m50 by the conditionf p593 MeV for each value oftR .
Thus we confirmed that the position ofP is stable under the
change oftR .

FIG. 4. The effective potential at finite chemical potential a
zero temperature. The curves show the casesm/LQCD50,0.5,0.6.

FIG. 5. The chemical potential dependence of2^q̄q&1/3 at T
50.
10500
IV. CONCLUSION

In this paper we studied the chiral phase transition at h
temperature and/or density in the QCD-like theory.

We extended the effective potential to finiteT andm and
studied the phase structure. We found the second-order p
transition atTc5129 MeV along them50 line and the first-
order phase transition atmc5422 MeV along theT50 line.
We also studied the phase diagram and found a tricrit
point P at (TP ,mP)5(107,210) MeV. Phase diagrams wit
similar structure have been obtained in other QCD-like th
ries @9,13#. As concerns the position of the tricritical poin
however, our result is not close to theirs. Let us consider
reason why our model gives a different result. In Ref.@9#,
they used the momentum independent coupling and the m
function without logarithmic behavior. The values ofTc and
mc of Ref. @13# are about the same as ours. However,
position of the tricritical point is in the region of smallm.
The discrepancy may arise from the fact that~1! they did not
use the variational method, but numerically solved the SD
and ~2! the treatment of the gluon propagator at finiteT
and/orm is different from ours. Our result is rather consiste
with that of the NJL model@2# and the random matrix mode
@3#. They obtained

TP;100 MeV, 3mP;~600–700! MeV.

Recently it was pointed out that the values ofT and m ac-
complished in high-energy heavy-ion collisions may be clo
to the tricritical point and it may be possible to observe so
signals@1#. Thus it is significant that three different mode
show almost the same results.

Finally, some comments are in order. In this paper,
modified the form of the CJT effective potential atT5m
50 using the two representations of the SDE. Our formu
tion of the effective potential is entirely based on t
Higashijima-Miransky approximation. It was known that th
approximation breaks the chiral Ward-Takahashi ident
Therefore, it is preferable to formulate the effective poten

FIG. 6. The phase diagram in theT-m plane. The solid line
indicates the phase transition of second order and points indi
that of first order. The pointP is the tricritical point.
8-5
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without this approximation. However, it seems that the
sults do not depend on choice of the argument momen
@23,25#. Moreover, the treatment of the quark and the glu
propagators at finiteT and/orm is somewhat oversimplified
in the present work. We would like to consider the wa
function renormalization and more appropriate functio
form for DT,m(p) and ST,m(p). By including a finite quark
mass, we can study a more realistic situation where the ch
symmetry is explicitly broken. In studies of the SDE wi
finite quark mass, it was known that there is a difficulty
removing a perturbative contribution from the quark cond
sate@19,26#. In the effective potential approach, however, w
are free from such a difficulty. A study of the phase struct
with finite quark mass is now in progress@21#. Furthermore,
we also plan to study the quark pairing including color s
perconductivity @2,4–8# and a ‘‘color-flavor locking’’ @7#
~for Nc5Nf53 case!, in the QCD-like theory.

APPENDIX

In this appendix, we show the effective potential expl
itly. In the first place, we consider the case of zero tempe
ture and finite chemical potential.

Using Eq.~24!, we obtain
e

n

n

n
o

G

10500
-
m
n

e
l

ral

-

e

-

-
a-

V1522E d4pE

~2p!4
ln

ST,m
2 ~p!1~p41 im!21p2

~p41 im!21p2

52
1

4p3Ep
lnF @ST,m

2 ~p!1p4
21p22m2#21~2mp4!2

~p4
21p22m2!21~2mp4!2 G ,

~A1!

where the imaginary part ofV1 is odd function ofp4; there-
fore it has been removed from Eq.~A1! and

E
p
5E

2`

`

dp4E
0

`

dupup2. ~A2!

In Eq. ~19!, we carry out the momentum differentiatio
and, then, use Eqs.~23! and ~24!. V2 is obtained as

V25
4s2

3p3C2a
E

p

~p4
21p2!2@ ln~p4

21p21pR
2 !#a22

~p4
21p21pR

2 !ln~p4
21p21pR

2 !1p4
21p2

3
1

~p4
21p21pR

2 !3 F ln~p4
21p21pR

2 !112
a

2G2

. ~A3!

At finite temperature and chemical potential, thep4 inte-
gration in Eqs.~A1! and~A3! is replaced by a sum over th
Matsubara frequencies.
.
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