46 research outputs found

    Progress of Multi-Beam Long Trace-Profiler Development

    Get PDF
    The multi-beam long trace profiler (LTP) under development at NASA s Marshall Space Flight Center[1] is designed to increase the efficiency of metrology of replicated X-ray optics. The traditional LTP operates on a single laser beam that scans along the test surface to detect the slope errors. While capable of exceptional surface slope accuracy, the LTP single beam scanning has slow measuring speed. As metrology constitutes a significant fraction of the time spent in optics production, an increase in the efficiency of metrology helps in decreasing the cost of fabrication of the x-ray optics and in improving their quality. Metrology efficiency can be increased by replacing the single laser beam with multiple beams that can scan a section of the test surface at a single instance. The increase in speed with such a system would be almost proportional to the number of laser beams. A collaborative feasibility study has been made and specifications were fixed for a multi-beam long trace profiler. The progress made in the development of this metrology system is presented

    Development of pseudorandom binary arrays for calibration of surface profile metrology tools

    Get PDF
    Optical Metrology tools, especially for short wavelength (EUV and X-Ray), must cover a wide range of spatial frequencies from the very low, which affects figure, to the important mid-spatial frequencies and the high spatial frequency range, which produces undesirable scattering. A major difficulty in using surface profilometers arises due to the unknown Point-Spread Function (PSF) of the instruments [1] that is responsible for distortion of the measured surface profile. Generally, the distortion due to the PSF is difficult to account because the PSF is a complex function that comes to the measurement via the convolution operation, while the measured profile is described with a real function. Accounting for instrumental PSF becomes significantly simpler if the result of measurement of a profile is presented in a spatial frequency domain as a Power Spectral Density (PSD) distribution [2]. For example, the measured PSD distributions provide a closed set of data necessary for three-dimensional calculations of scattering of light by the optical surfaces [3], [4]. The distortion of the surface PSD distribution due to the PSF can be modeled with the Modulation Transfer Function (MTF), which is defined over the spatial frequency bandwidth of the instrument [1], [2]. The measured PSD distribution can be presented as a product of the squared MTF and the ideal PSD distribution inherent for the System Under Test (SUT). Therefore, the instrumental MTF can be evaluated by comparing a measured PSD distribution of a known test surface with the corresponding ideal numerically simulated PSD. The square root of the ratio of the measured and simulated PSD distributions gives the MTF of the instrument. In previous work [5], [6] the instrumental MTF of a surface profiler was precisely measured using reference test surfaces based on Binary Pseudo-Random (BPR) gratings. Here, we present results of fabricating and using two-dimensional (2D) BPR arrays that allow for a direct 2D calibration of the instrumental MTF. BPR sequences are widely used in engineering and communication applications such as Global Position System, and wireless communication protocols. The ideal BPR pattern has a flat 'white noise' response over the entire range of spatial frequencies of interest. The BPR array used here is based on the Uniformly Redundant Array prescription [7] initially used for x-ray and gamma ray astronomy applications. The URA's superior imaging capability originates from the fact that its cyclical autocorrelation function very closely approximates a delta function, which produces a flat PSD. Three different size BPR array patterns were fabricated by electron beam lithography and ICP etching of silicon. The basic size unit was 200 nm, 400 nm, and 600 nm. Two different etch processes were used, CF{sub 4}/Ar and HBr, which resulted in undercut and vertical sidewall profiles, respectively. The 2D BPR arrays were used as standard test surfaces for MTF calibration of the MicroMap{trademark}-570 interferometric microscope using all available objectives. The HBr etched two-dimensional BPR arrays have proven to be a very effective calibration standard making possible direct calibration corrections without the need of additional calculation considerations, while departures from the ideal vertical sidewall require an additional correction term for the CF{sub 4}/Ar etched samples. [8] Initial surface roughness of low cost 'prime' wafers limits low magnification calibration but should not be a limitation if better polished samples are used

    Development of a new generation of optical slope measuring profiler

    Full text link
    A collaboration, including all DOE synchrotron labs, industrial vendors of x-ray optics, and with active participation of the HBZ-BESSY-II optics group has been established to work together on a new slope measuring profiler -- the optical slope measuring system (OSMS). The slope measurement accuracy of the instrument is expected to be<50 nrad for the current and future metrology of x-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable; and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010)

    Status of Multi-beam Long Trace-profiler Development

    Get PDF
    The multi-beam long trace profiler (MB-LTP) is under development at NASA's Marshall Space Flight Center. The traditional LTPs scans the surface under the test by a single laser beam directly measuring the surface figure slope errors. While capable of exceptional surface slope accuracy, the LTP single beam scanning has slow measuring speed. Metrology efficiency can be increased by replacing the single laser beam with multiple beams that can scan a section of the test surface at a single instance. The increase in speed with such a system would be almost proportional to the number of laser beams. The progress for a multi-beam long trace profiler development is presented

    Development of Multi-Beam Long Trace Profiler

    Get PDF
    In order to fulfill the angular resolution requirements and make the performance goals for future NASA missions feasible, it is crucial to develop instruments capable of fast and precise figure metrology of x-ray optical elements for further correction of the surface errors. The Long Trace Profilometer (LTP) is an instrument widely used for measuring the surface figure of grazing incidence X-ray mirrors. In the case of replicated optics designed for x-ray astronomy applications, such as mirrors and the corresponding mandrels have a cylindrical shape and their tangential profile is parabolic or hyperbolic. Modern LTPs have sub-microradian accuracy, but the measuring speed is very low, because the profilometer measures surface figure point by point using a single laser beam. The measurement rate can be significantly improved by replacing the single optical beam with multiple beams. The goal of this study is to demonstrate the viability of multi-beam metrology as a way of significantly improving the quality and affordability of replicated x-ray optics. The multi-beam LTP would allow one- and two-dimensional scanning with sub-microradian resolution and a measurement rate of about ten times faster compared to the current LTP. The design details of the instrument's optical layout and the status of optical tests will be presented

    279 Development of Pseudo-random Binary Arrays for Calibration of Surface Profile Metrology Tools

    Get PDF
    Abstract Optical Metrology tools, especially for short wavelength (EUV and X-Ray), must cover a wide range of spatial frequencies from the very low, which affects figure, to the important mid-spatial frequencies and the high spatial frequency range, which produces undesirable scattering. A major difficulty in using surface profilometers arises due to the unknown Point-Spread Function (PSF) of the instruments [1] that is responsible for distortion of the measured surface profile. Generally, the distortion due to the PSF is difficult to account because the PSF is a complex function that comes to the measurement via the convolution operation, while the measured profile is described with a rea

    Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: expanding the application range

    Get PDF
    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A616, 172 (2010)]. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    corecore