9 research outputs found

    Capacity: Cryptographically-Enforced In-Process Capabilities for Modern ARM Architectures (Extended Version)

    Full text link
    In-process compartmentalization and access control have been actively explored to provide in-place and efficient isolation of in-process security domains. Many works have proposed compartmentalization schemes that leverage hardware features, most notably using the new page-based memory isolation feature called Protection Keys for Userspace (PKU) on x86. Unfortunately, the modern ARM architecture does not have an equivalent feature. Instead, newer ARM architectures introduced Pointer Authentication (PA) and Memory Tagging Extension (MTE), adapting the reference validation model for memory safety and runtime exploit mitigation. We argue that those features have been underexplored in the context of compartmentalization and that they can be retrofitted to implement a capability-based in-process access control scheme. This paper presents Capacity, a novel hardware-assisted intra-process access control design that embraces capability-based security principles. Capacity coherently incorporates the new hardware security features on ARM that already exhibit inherent characteristics of capability. It supports the life-cycle protection of the domain's sensitive objects -- starting from their import from the file system to their place in memory. With intra-process domains authenticated with unique PA keys, Capacity transforms file descriptors and memory pointers into cryptographically-authenticated references and completely mediates reference usage with its program instrumentation framework and an efficient system call monitor. We evaluate our Capacity-enabled NGINX web server prototype and other common applications in which sensitive resources are isolated into different domains. Our evaluation shows that Capacity incurs a low-performance overhead of approximately 17% for the single-threaded and 13.54% for the multi-threaded webserver.Comment: Accepted at ACM CCS 202

    Aerodynamic Design Optimization of a Micro Radial Compressor of a Turbocharger

    No full text
    This study presents an aerodynamic design optimization of a micro radial compressor impeller on a turbocharger used in a 0.8 L two-cylinder gasoline engine. In the conventional design optimization of the impeller, the hub and shroud curve of the main blade is commonly parameterized with a beta distribution, and splitter blades are generally considered short versions of the full blade. However, geometrical parameterizations in our study mainly focus on the beta distribution of a full blade, and it is parameterized differently from the conventional way. Eight parameters are selected as design variables for the beta distribution. To maximize the isentropic efficiency, design points that are created by Design of Experiment (DOE) are evaluated through single-objective optimization coupled with a non-parametric regression surrogate model. Furthermore, the splitter leading edge location on the meridional plane is investigated to enhance the performance of the impeller after the optimization process. The results show that total efficiency enhancement of approximately 2.2% is achieved. Furthermore, the findings show that a full blade beta distribution and the splitter leading edge location are sufficient parameters to optimize the impeller, and, with the proposed optimization, splitter blades are no longer copies of the full blade for each application

    Effect of Substrate Roughness on Adhesion and Structural Properties of Ti-Ni Shape Memory Alloy Thin Film

    No full text
    Ti-Ni shape memory alloy (SMA) thin films are very attractive material for industrial and medical applications such as micro-actuator, micro-sensors, and stents for blood vessels. An important property besides shape memory effect in the application of SMA thin films is the adhesion between the film and the substrate. When using thin films as micro-actuators or micro-sensors in MEMS, the film must be strongly adhered to the substrate. On the other hand, when using SMA thin films in medical devices such as stents, the deposited alloy thin film must be easily separable from the substrate for efficient processing. In this study, we investigated the effect of substrate roughness on the adhesion of Ti-Ni SMA thin films, as well as the structural properties and phase-transformation behavior of the fabricated films. Ti-Ni SMA thin films were deposited onto etched glass substrates with magnetron sputtering. Radio frequency plasma was used for etching the substrate. The adhesion properties were investigated through progressive scratch test. Structural properties of the films were determined via Feld emission scanning electron microscopy, X-ray diffraction measurements (XRD) and Energy-dispersive X-ray spectroscopy analysis. Phase transformation behaviors were observed with differential scanning calorimetry and low temperature-XRD. Ti-Ni SMA thin film deposited onto rough substrate provides higher adhesive strength than smooth substrate. However the roughness of the substrate has no influence on the growth and crystallization of the Ti-Ni SMA thin films.1

    Phase Stability and Properties of Ti-Nb-Zr Thin Films and Their Dependence on Zr Addition

    No full text
    Ternary Ti-Nb-Zr alloys were prepared by a magnetron sputtering method with porous structures observed in some of them. In bulk, in order to control the porous structure, a space holder (NH4HCO3) is used in the sintering method. However, in the present work, we show that the porous structure is also dependent on alloy composition. The results from Young’s modulus tests confirm that these alloys obey d-electrons alloy theory. However, the Young’s modulus of ternary thin films (≈80–95 GPa) is lower than that for binary alloys (≈108–123 GPa). The depth recovery ratio of ternary Ti-Nb-Zr thin films is also higher than that for binary β-Ti-(25.9–34.2)Nb thin film alloys
    corecore