13 research outputs found

    The Tomato Sequencing Project, the First Cornerstone of the International Solanaceae Project (SOL)

    Get PDF
    The genome of tomato (Solanum lycopersicum) is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, The Netherlands, France, Japan, Spain, Italy and the United States) as part of a larger initiative called the ‘International Solanaceae Genome Project (SOL): Systems Approach to Diversity and Adaptation’. The goal of this grassroots initiative, launched in November 2003, is to establish a network of information, resources and scientists to ultimately tackle two of the most significant questions in plant biology and agriculture: (1) How can a common set of genes/proteins give rise to a wide range of morphologically and ecologically distinct organisms that occupy our planet? (2) How can a deeper understanding of the genetic basis of plant diversity be harnessed to better meet the needs of society in an environmentally friendly and sustainable manner? The Solanaceae and closely related species such as coffee, which are included in the scope of the SOL project, are ideally suited to address both of these questions. The first step of the SOL project is to use an ordered BAC approach to generate a high quality sequence for the euchromatic portions of the tomato as a reference for the Solanaceae. Due to the high level of macro and micro-synteny in the Solanaceae the BAC-by-BAC tomato sequence will form the framework for shotgun sequencing of other species. The starting point for sequencing the genome is BACs anchored to the genetic map by overgo hybridization and AFLP technology. The overgos are derived from approximately 1500 markers from the tomato high density F2-2000 genetic map (http://sgn.cornell.edu/). These seed BACs will be used as anchors from which to radiate the tiling path using BAC end sequence data. Annotation will be performed according to SOL project guidelines. All the information generated under the SOL umbrella will be made available in a comprehensive website. The information will be interlinked with the ultimate goal that the comparative biology of the Solanaceae—and beyond—achieves a context that will facilitate a systems biology approach

    A hybrid BAC physical map of potato: a framework for sequencing a heterozygous genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Potato is the world's third most important food crop, yet cultivar improvement and genomic research in general remain difficult because of the heterozygous and tetraploid nature of its genome. The development of physical map resources that can facilitate genomic analyses in potato has so far been very limited. Here we present the methods of construction and the general statistics of the first two genome-wide BAC physical maps of potato, which were made from the heterozygous diploid clone RH89-039-16 (RH).</p> <p>Results</p> <p>First, a gel electrophoresis-based physical map was made by AFLP fingerprinting of 64478 BAC clones, which were aligned into 4150 contigs with an estimated total length of 1361 Mb. Screening of BAC pools, followed by the KeyMaps <it>in silico </it>anchoring procedure, identified 1725 AFLP markers in the physical map, and 1252 BAC contigs were anchored the ultradense potato genetic map. A second, sequence-tag-based physical map was constructed from 65919 whole genome profiling (WGP) BAC fingerprints and these were aligned into 3601 BAC contigs spanning 1396 Mb. The 39733 BAC clones that overlap between both physical maps provided anchors to 1127 contigs in the WGP physical map, and reduced the number of contigs to around 2800 in each map separately. Both physical maps were 1.64 times longer than the 850 Mb potato genome. Genome heterozygosity and incomplete merging of BAC contigs are two factors that can explain this map inflation. The contig information of both physical maps was united in a single table that describes hybrid potato physical map.</p> <p>Conclusions</p> <p>The AFLP physical map has already been used by the Potato Genome Sequencing Consortium for sequencing 10% of the heterozygous genome of clone RH on a BAC-by-BAC basis. By layering a new WGP physical map on top of the AFLP physical map, a genetically anchored genome-wide framework of 322434 sequence tags has been created. This reference framework can be used for anchoring and ordering of genomic sequences of clone RH (and other potato genotypes), and opens the possibility to finish sequencing of the RH genome in a more efficient way via high throughput next generation approaches.</p

    State of the art. Overview of concepts, indicators and methodologies used for analyzing the social OMC.

    Get PDF
    This paper is a detailed analysis about the literature on the Social OMC from 2006-2010, focusing on how OMC research has been carried out. It specifically points to which theoretical framework/concepts are used, and how change is conceptualised and measured. It is organised in five sections. The first concerns visibility and awareness about the OMC; the second analyses research on the EU level coordination process; the third scrutinizes how features of the OMC have been analysed. The fourth and fifth sections, addressing how national integration of the OMC has been researched, respectively address substantive policy change as well as national policy-making. Strikingly, virtually all OMC research adopts theoretical frameworks derived from literature on Europeanisation and/or institutionalisation. Also, as the OMC is voluntary and sanction-free, it depends heavily on how and the the extent to which actors use it (agenda-setting, conflict resolution, maintaining focus on a policy issue, developing a policy dialogue, etc). OMC research has become nuanced and does highlight how, for which purpose and with which outcome actors engage with the OMC. Another finding is that there is data on policy issues addressed through the OMC, learning does take place and there is knowledge about domestic policy problems. However, the linkage between knowledge of an issue and direct use of the OMC for policy change in social policy is weak, but that may change with EU2020, where social policy has received a higher profile. Most research covers the EU-15, much more research needs to be undertaken in newer EU member states

    TOPAAS, a Tomato and Potato Assembly Assistance System for Selection and Finishing of Bacterial Artificial Chromosomes

    No full text
    We have developed the software package Tomato and Potato Assembly Assistance System (TOPAAS), which automates the assembly and scaffolding of contig sequences for low-coverage sequencing projects. The order of contigs predicted by TOPAAS is based on read pair information; alignments between genomic, expressed sequence tags, and bacterial artificial chromosome (BAC) end sequences; and annotated genes. The contig scaffold is used by TOPAAS for automated design of nonredundant sequence gap-flanking PCR primers. We show that TOPAAS builds reliable scaffolds for tomato (Solanum lycopersicum) and potato (Solanum tuberosum) BAC contigs that were assembled from shotgun sequences covering the target at 6- to 8-fold coverage. More than 90% of the gaps are closed by sequence PCR, based on the predicted ordering information. TOPAAS also assists the selection of large genomic insert clones from BAC libraries for walking. For this, tomato BACs are screened by automated BLAST analysis and in parallel, high-density nonselective amplified fragment length polymorphism fingerprinting is used for constructing a high-resolution BAC physical map. BLAST and amplified fragment length polymorphism analysis are then used together to determine the precise overlap. Assembly onto the seed BAC consensus confirms the BACs are properly selected for having an extremely short overlap and largest extending insert. This method will be particularly applicable where related or syntenic genomes are sequenced, as shown here for the Solanaceae, and potentially useful for the monocots Brassicaceae and Leguminosea

    A bacterial artificial chromosome-based genetic linkage map of the nematode Pristionchus pacificus.

    No full text
    To understand the evolution of developmental processes, nonmodel organisms in the nematodes, insects, and vertebrates are compared with established model systems. Often, these comparisons suffer from the inability to apply sophisticated technologies to these nonmodel species. In the nematode Pristionchus pacificus, cellular and genetic analyses are used to compare vulva development to that of Caenorhabditis elegans. However, substantial changes in gene function between P. pacificus and C. elegans limit the use of candidate gene approaches in studying P. pacificus mutations. To facilitate map-based cloning of mutations in P. pacificus, we constructed a BAC-based genetic linkage map. A BAC library of 13,440 clones was generated and completely end sequenced. By comparing BAC end and EST sequences between the "wild-type" strain P. pacificus var. California and the polymorphic strain P. pacificus var. Washington, 133 single-stranded conformational polymorphisms were identified. These markers were tested on a meiotic mapping panel of 46 randomly picked F(2) animals after a cross of the two strains, providing the first genetic linkage map of P. pacificus. A mapping strategy using two selected markers per chromosome was devised and the efficiency of this approach was illustrated by the mapping of the Ppa-unc-1/Twitchin gene

    Sequence-based physical mapping of complex genomes by whole genome profiling

    No full text
    We present whole genome profiling (WGP), a novel next-generation sequencing-based physical mapping technology for construction of bacterial artificial chromosome (BAC) contigs of complex genomes, using Arabidopsis thaliana as an example. WGP leverages short read sequences derived from restriction fragments of two-dimensionally pooled BAC clones to generate sequence tags. These sequence tags are assigned to individual BAC clones, followed by assembly of BAC contigs based on shared regions containing identical sequence tags. Following in silico analysis of WGP sequence tags and simulation of a map of Arabidopsis chromosome 4 and maize, a WGP map of Arabidopsis thaliana ecotype Columbia was constructed de novo using a six-genome equivalent BAC library. Validation of the WGP map using the Columbia reference sequence confirmed that 350 BAC contigs (98%) were assembled correctly, spanning 97% of the 102-Mb calculated genome coverage. We demonstrate that WGP maps can also be generated for more complex plant genomes and will serve as excellent scaffolds to anchor genetic linkage maps and integrate whole genome sequence data

    Evidence for an ancient chromosomal duplication in Arabidopsis thaliana by sequencing and analyzing a 400-kb contig at the APETALA2 locus on chromosome 4

    Get PDF
    AbstractAs part of the European Scientists Sequencing Arabidopsis program, a contiguous region (396 607 bp) located on chromosome 4 around the APETALA2 gene was sequenced. Analysis of the sequence and comparison to public databases predicts 103 genes in this area, which represents a gene density of one gene per 3.85 kb. Almost half of the genes show no significant homology to known database entries. In addition, the first 45 kb of the contig, which covers 11 genes, is similar to a region on chromosome 2, as far as coding sequences are concerned. This observation indicates that ancient duplications of large pieces of DNA have occurred in Arabidopsis
    corecore