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Abstract As part of the European Scientists Sequencing
Arabidopsis program, a contiguous region (396 607 bp) located
on chromosome 4 around the APETALA2 gene was sequenced.
Analysis of the sequence and comparison to public databases
predicts 103 genes in this area, which represents a gene density of
one gene per 3.85 kb. Almost half of the genes show no
significant homology to known database entries. In addition, the
first 45 kb of the contig, which covers 11 genes, is similar to a
region on chromosome 2, as far as coding sequences are
concerned. This observation indicates that ancient duplications
of large pieces of DNA have occurred in Arabidopsis.
© 1999 Federation of European Biochemical Societies.
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1. Introduction

In plant molecular biology and genetics, Arabidopsis thali-
ana has long been recognized as a model organism [1]. By the
end of 1993, a project designated European Scientists Se-
quencing Arabidopsis (ESSA) was initiated with the aim of
sequencing large fragments of the A. thaliana genome. Cur-
rently, a whole international team is working on the comple-
tion of that genome [2].
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The genomic sequence of the contig has been submitted to the
GenBank under accession numbers Z99707 and Z99708 (with 8361-bp
overlap). Cognate cDNAs have accession numbers AJ002596,
AJ002597, and AJ002598.

Within the ESSA program, most effort was concentrated
initially on chromosome 4 around the FCA locus [3] and the
APETALA2 (AP2) locus. The ap2 mutant had been described,
mapped, and cloned before [4-6]. On the most recent map of
Dean and Lister [7], 4P2 was found between the markers
m214 and 22486 at 93.2 cM (the whole chromosome 4 being
116 cM).

Results of the sequencing and analysis of this latter region,
as the result of cooperation between two laboratories, will be
discussed here. This region represents the second largest con-
tig of Arabidopsis being analyzed in detail, preceded by the
2 Mb FCA contig [3].

2. Materials and methods

2.1. Isolation and subcloning of an AP2-containing yeast artificial
chromosome (YAC)

The CIC YAC clone 7A10, size 420 kb (from the CIC A. thaliana
(L.) Heynh. ecotype Columbia library) was isolated by using AFLP
(filed by Keygene N.V.) markers [8,9] derived from sequences of the
AP2 gene and subcloned in the cosmid vector pCLD04541 [10], using
a partial Sau3Al digest. To isolate YAC-specific cosmids, a total
number of 16000 Escherichia coli clones were hybridized to gel-puri-
fied YAC DNA. Approximately 450 YAC-specific clones were iden-
tified. AFLP fingerprinting [9] was used to build a cosmid contig. This
approach resulted in a cosmid contig of approximately 260 kb.

2.2. Isolation of bacterial artifical chromosome (BAC) clones
extending the cosmid contig

The BAC clones were isolated through hybridization of the BAC
library with a probe containing the inserts of all cosmids of the 260-kb
contig, followed by contig building by AFLP. All AFLP markers
present in the cosmid contig were also present in the BAC contig,
indirectly proving colinearity of the cosmid contig with the genomic
sequence. TAMU 8H13 and TAMU 10C14, which overlapped with
the cosmid contig, were selected for further sequencing (Fig. 1).

2.3. Construction of cosmid and BAC subclones

DNA from cosmids and BAC clones was sheared either by sonica-
tion (Misonix Inc., Farmingdale, NY; type XL2020) or by nebulizing
(Lifecare Hospital Supplies, Harborough, UK). A 1.8-2.2-kb end-re-
paired fraction was isolated and ligated in pUC18/Smal/BAP (Phar-
macia, Uppsala, Sweden) or a modified pUCI19 vector (BamHI/Sall
fragment replaced by a Stul-, Spel-, and Sa/l-containing fragment).
Individual colonies of the transformation were grown in 96- or 384-
well microtiter plates.

0014-5793/99/$19.00 © 1999 Federation of European Biochemical Societies. All rights reserved.

PII: S0014-5793(99)00097-6


https://core.ac.uk/display/81998471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

238

2.4. Sequencing strategy

The sequence of the partially overlapping cosmids 3A6, 4B6, 4E12,
5C9, 2H2, 5E2, 2F3, 2H7, and BAC TAMU 10C14 was determined in
a non-random approach by sequencing the cosmid or BAC ends, as
well as a few random subclones. Primers were designed to isolate
primer-specific clones from pools of subclones. A random sequencing
approach was taken for cosmids 2C7, 3A6, 4F4, 3F11, 6BS, 5E3,
4G12, 4E3, and BAC TAMU 13H8. The ABI PRISM dye terminator
cycle sequencing ready reaction kit was used mostly (Perkin-Elmer,
Foster City, CA). The reaction products were analyzed on an ABI
Prism 377. The sequence with the corresponding electropherograms
were assembled into contigs using a home-made computer program
called Sequence Assembly Facility Environment (SAFE; [11]) or the
1994 version of the Staden sequence analysis program [12]. The mean
redundancy of the assembled sequence is 5.

2.5. Sequence comparisons

Sequence analysis was done initially by the Martinsried Institute for
Protein Sequences (MIPS) center (Martinsried, Germany) and refined
by the bioinformatics team of the Laboratory of Genetics (Ghent,
Belgium). To this end, the sequence was cut into pieces of 7000 bp
with 1000-bp overlaps. Each piece was submitted to a BLASTX/non-
redundant protein and BLASTN/non-redundant DNA search as well
as a BLASTN/EST search (mostly on the Beauty BCM server). From
the resulting files, the homologues with the highest score and a reliable
annotation were looked for.

When a homologue was found with a high score (P(N) < E—100)
and with homology over its whole length, its protein sequence was
followed to check whether the transcript did not show any frameshifts
or stop codons and whether the intron borders were correct. When
any doubt arose, NetGene2 predictions were used [13,14].

For genes with weak homologies, different prediction programs
were used according to the specific problems: NetStart when the start
codon was not obvious, GeneMark [15] together with GenScan [16]
for exon predictions, GeneMark for exon frame predictions, GenScan
to check that small exons were not missed, and NetGene2 for intron
border prediction. When an expressed sequence tag (EST) was found
through BLASTN/EST (most of the time for the 5’ or 3’ parts of the
genes), the EST was used to complement the information obtained by
BLASTX.

When no homologues were found through BLASTX, and no ESTs
were available, we relied upon prediction programs, namely GenScan
and GeneMark together to locate potential exons, NetGene2 for the
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intron borders, and NetStart [17] for the position of the start codon.
In all cases, the coding sequence (CDS) was reconstructed, translated,
and submitted to BLASTP, for a last homology search and check for
gaps.

Updated FASTA searches done at MIPS on the genes in this contig
can be found at http://speedy.mips.biochem.mpg.de/arbi/data/
ap2_contig.html. Full annotations as well as various genomic features
can also be found at the Ghent site (http://spider.rug.ac.be/public/seq/
ap-2.html).

3. Results and discussion

3.1. General overview of the contig

Fig. 1 gives an overview of the clones used for the sequenc-
ing program. Initially cosmid clones were used, but during the
project BAC clones became available and these were used to
continue the contig sequencing (see Section 2).

The 103 predicted genes that are present in this region are
summarized in Tables 1 and 2 and in Fig. 2. Table 1 provides
information on their putative function, highest related entry in
the public databases as well as EST sequences that correspond
to the putative genes whereas in Table 2 the genes are classi-
fied based on their homology.

In conclusion, the putative role of approximately half of the
genes could be established by sequence similarity to known
genes. These genes have been classified into 15 classes accord-
ing to their putative cellular role that will be used to describe
genes identified in the genome program [3]. This list is
preliminary and new categories and subcategories will be
added as more of the genome is sequenced (updated version
available at http://muntjac.mips.biochem.de/arabi/fca/gene/
funcat_table.html).

3.2. Annotation and re-annotation process
After the first MIPS automatic annotation, manual re-an-
notation showed discrepancies on about four genes out of
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Fig. 1. Chromosomal location of the AP2 gene. Overview of the cosmids and BACs used for sequencing. The upper line represents the chromo-
somal region (approximately 10 ¢cM) with some known markers in the region. The sequenced cosmids and BAC clone are indicated as well as
the region covered by the two database submissions covering this region (299707 and Z99708). The sequence Z99707 (206440 bp) contains 50
genes (1-50) with an 8361-bp overlap with Z99708 (198 555 bp) that contains 53 genes (51-103).
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Table 2
Classes of similarities to genes

N. Terryn et al./IFEBS Letters 445 (1999) 237-245

Class BLAST E value Type of matching protein Number Predicted function
1 identical same protein 4 4
2 <1079 known protein 23 23
3 between 1071 and 107°° known protein 33 28
4 <10710 hypothetical protein 8 -
5 >10"10 none, but has cognate EST match 11 —
6 <150 none, no cognate EST match 24 -
Total 103 55

five. In addition, the re-annotation pointed to a few frame-
shifts caused by sequence errors that have been corrected this
way. Similar issues have been raised for annotation of bacte-
rial genomes [18], but to a lesser extent. As the task of anno-
tation of a higher eukaryote genome is much more difficult
because of the larger size of the genome, the lesser gene con-
tent, the split gene structure, and less homologies to known
database entries, such a result is not surprising. It is clearly a
warning for caution when using the present-day annotations,
and it indicates that complete re-annotation of the genome
will be needed.

3.3. Statistical analysis of the contig

As can be deduced from Table 1, 59 genes can be found on
the Watson and 44 on the Crick strand. Gene density is quite
high (3.85 kb/gene) compared to that of the FCA region [3]

(4.8 kb/gene) and the mean density of 4.1 kb/gene reported for
6.7 Mb sequenced on chromosome 5 [19]. Nevertheless, re-
gions of 1.2 Mb on chromosome 5 have been reported with
a similarly high gene density of 3.84 kb/gene [20]. In total,
42% of the genes are highly similar to Arabidopsis EST se-
quences (>95% similarity).

Table 3 represents a statistical analysis done on both
strands of the 400-kb contig in terms of occurrence and size
of genes, introns, and exons. Intergenic regions cover approx-
imately 53% of the contig, whereas introns represent 16% and
coding sequences 31%. As a mean, the first intron is longer
than the others and the first and last exons longer than the
middle ones. It is noteworthy that local as well as strand
heterogeneities were observed. For example, genes in the first
half of the sequence have smaller introns than those in the
second half of the contig, whereas exons have a similar aver-

Fig. 2. Schematic overview of the exons of the 103 genes present in the 379-kb contig. Genes are marked by numbers; each number represents

a new gene. Gene 13 is not indicated.
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GCTGAAT [gtatcctt....tcttaacttgaa----cgtttcag|AAACTTCCG g15_i4

TCTATTT|gtatcctt....ccttaattcgaaaaatcaaaacag|ATAATACTG g52_19

GAGCAGG|atatcctt....ccttaacagg--------- cccac |ATGCCCAGG p120_ié
....... 3tatcctt... .ccttaay.ceeeenens ....yac ceeesss.. CONsensus
9 A 9
donor acceptor

Fig. 3. Ul2 class introns. gl5_i4, Ul2-type intron #4 of gene 15
from this contig; g52_i9, Ul2-type intron #9 of gene 52 from this
contig; pl120_i6, Ul2-type intron #6 from the human p/20 gene.
The intron sequence is given in lowercase. A marks the branch
point.

age size (data not shown). In addition, both exons and introns
on the Watson strand are larger than those on the Crick
strand.

3.4. Finding of two Ul2-type introns

The 102 protein-encoding genes were found or predicted to
contain 429 introns. All of these introns, except two, have the
consensus sequences of classical U2-type introns. The remain-
ing two are the last intron (i4) from gene 15, which is distantly
related to the histone-binding protein from Xenopus, and the
last intron (i9) from gene 52, which is clearly similar to a small
yeast gene family encoding membrane proteins of unknown
function. Interestingly, a paralogue of gene 52 was found in
another contig from chromosome 4 (al022224/a1021637), but
this gene does not seem to have any intron. These introns,
although having GT-AG borders, display the distinctive fea-
tures of Ul2-type introns with their very conserved donor and
branch sites and the typical short distance between the poten-
tial branch point and the acceptor site with no polypyrimidine
tract, as shown in Fig. 3. Such introns were initially found in
animals where they have been shown to need specific sSnRNAs
for their splicing. More recently, they have been found in
plants too [21,22] and are considered to be of rare occurrence.
The finding of two members out of a total 429 may give a first
estimation of their actual frequency in the Arabidopsis ge-
nome. For the time being, these introns are not correctly
predicted by any gene prediction program.
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3.5. Gene clustering

There are three clusters of tandem gene repeats in the con-
tig. A cluster of five P450 genes is found at its 5’ extremity.
These genes have the same genomic structure (three exons)
and their coding sequences are very similar to each other
(74-83% similarity between copies 1-4, 60% between them
and copy 5), their best homologue being an elicitor-induced
P450 from licorice. There is another P450 gene (gene 99) at
the other end of the contig that differs from the genes in the
cluster (low homology, 10 exons). The clustering of these five
P450 genes suggests that they might originate from a common
ancestor late in evolution and could probably be involved in
different steps of the same pathway (secondary metabolism,
defence, etc.).

Three patatin genes (genes 30, 31, and 32) are also found
clustered. Patatin is the major storage protein of potato and
homologues have already been found in other species, but not
yet in Arabidopsis. The patatins found in this cluster are sim-
ilar to each other, the first and second copy being very close
(90%). The third copy is more distant (67-69% similarity to
the others) and differs specifically at the N-terminus, suggest-
ing a different subcellular localization of this member.

The third cluster is an imperfect tandem repeat of a gene
encoding a protein with strong similarity to hydroxynitrile
lyase, an enzyme that produces cyanide by hydrolyzing cya-
nogen glucosides, which are secondary metabolites produced
in a narrow range of plants. Only the first repeat contains a
complete and potentially functional gene with three exons.
The gene in the second repeat seems truncated after the first
exon, and would thus be a pseudo-gene. Paralogues of this
gene have been found in the FCA region [3]; the finding of
such a gene is unexpected, because Arabidopsis has not been
reported to produce cyanogen glucosides. It would be inter-
esting to check whether these genes are functional and in-
duced by pathogens and/or predator attack, and to examine
which substrate their products would hydrolyze.

3.6. Genome duplication

During the process of gene search, several genes at the 5’
extremity of the contig were observed to have homologues
located in the AC002391 contig from chromosome 2. To

Table 3
Statistical analysis of the AP2 contig
Total Number Mean per gene Total size (bp) Mean size (bp) % W strand® (+) C strand® (—)
Genic regions
RNA CDS 1 71
Protein CDS* 100 121289 1214 31.2 56* 44*
Without introns 15 13707 914 7* 8*
With introns 85 107 692 1270 49%* 36*
Introns™"
Total 429 5.05 63530 148 16.2 160 133
First 85 16785 197 248 129
Rest 344 46745 136 137 134
Exons*?
Total 526 6.19 107 692 205 230 180
First 85 25961 305 314 293
Rest 346 55625 161 176 141
Last 85 26106 307 364 229
Intergenic regions

102 208 556 2045 52.6

2Statistics on full-length genes.

bMeans refer to intron-containing genes; for all genes, the mean numbers of introns and exons per gene are 4.29 and 5.26, respectively.
“W and C strand columns refer to sizes, except for figures followed by an asterisk, where they represent numbers. The region analyzed is the whole
396-kb contig, except for gene 13, for which the prediction is uncertain (a pseudo-gene).
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Fig. 4. Dot-plot comparison of a region on chromosome 2 (AC002391, bp 15000-75000) with the first 60 kb of the sequence described here
(Z99707). Genes are numbered as in Table 1. Asterisks indicate non-homologous genes, the arrows inside the plot mark the regions of homolo-

gous genes.

check the gene arrangement, a dot-plot comparison of both
contigs was performed using the GCG compare/dot-plot and
the dotter [23] programs. As seen in Fig. 4, the first 45 kb
(Watson strand) of the contig show similarities to a region of
comparable size of the ACO002391 contig (Crick strand,
77000-32000). The extent of the duplication is perhaps larger,
because no sequence is available yet on the 5’ side of the AP2
contig described here. The homology is patchy, being mostly

restricted to the coding sequence of the homologous genes.
Among the 12 genes found in this region on the contig,
nine have a counterpart in the chromosome 2 contig, the
order and the orientation of the genes being conserved. This
situation strongly suggests an ancient duplication of this re-
gion in the Arabidopsis genome. This duplication must indeed
be ancient, because most non-coding sequences (introns, inter-
genic sequences) are not conserved and because the two copies
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differ by several insertions/deletions of various genes. One
such deletion is found in the chromosome 2 counterpart of
gene 9 for which homologies are found with several metal
(Cu, Cd) transporters. On chromosome 4, gene 9 is predicted
with 13 exons, encoding a 819-amino acid protein. On chro-
mosome 2, the corresponding gene is truncated on its 5" side
and is predicted to have three exons encoding a 221-amino
acid protein. The P450 cluster described above is the 5’-most
part of the duplicated region. Whereas the chromosome 4
copy contains five P450 members in tandem repeat, only
two P450 members are found in the chromosome 2 counter-
part, separated by an insertion of two foreign genes and
flanked by a P450 of different origin. The genetic distances
between the different P450 members suggests that the dupli-
cation of the P450 genes on chromosome 2, and at least the
duplications responsible for the four first copies on chromo-
some 4, occurred after the duplication of the 45-kb region
itself. Although the Arabidopsis genome is of small size, du-
plication of individual genes appears to be frequent. Duplica-
tion on a larger scale has been suggested from mapping data
[24], but, to our knowledge, this is the first demonstration of a
duplication of a large region in Arabidopsis. The completion
of the Arabidopsis genome sequence will tell us to which ex-
tent these duplications occur. A comparative analysis of the
repeats in various ecotypes and neighbor species will inform
us when this happened in the Arabidopsis evolutionary his-
tory.
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