990 research outputs found

    Generative adversarial networks in ophthalmology: what are these and how can they be used?

    Get PDF
    PURPOSE OF REVIEW: The development of deep learning (DL) systems requires a large amount of data, which may be limited by costs, protection of patient information and low prevalence of some conditions. Recent developments in artificial intelligence techniques have provided an innovative alternative to this challenge via the synthesis of biomedical images within a DL framework known as generative adversarial networks (GANs). This paper aims to introduce how GANs can be deployed for image synthesis in ophthalmology and to discuss the potential applications of GANs-produced images. RECENT FINDINGS: Image synthesis is the most relevant function of GANs to the medical field, and it has been widely used for generating 'new' medical images of various modalities. In ophthalmology, GANs have mainly been utilized for augmenting classification and predictive tasks, by synthesizing fundus images and optical coherence tomography images with and without pathologies such as age-related macular degeneration and diabetic retinopathy. Despite their ability to generate high-resolution images, the development of GANs remains data intensive, and there is a lack of consensus on how best to evaluate the outputs produced by GANs. SUMMARY: Although the problem of artificial biomedical data generation is of great interest, image synthesis by GANs represents an innovation with yet unclear relevance for ophthalmology

    Anti-fouling graphene-based membranes for effective water desalination

    Get PDF
    © 2018 The Author(s). The inability of membranes to handle a wide spectrum of pollutants is an important unsolved problem for water treatment. Here we demonstrate water desalination via a membrane distillation process using a graphene membrane where water permeation is enabled by nanochannels of multilayer, mismatched, partially overlapping graphene grains. Graphene films derived from renewable oil exhibit significantly superior retention of water vapour flux and salt rejection rates, and a superior antifouling capability under a mixture of saline water containing contaminants such as oils and surfactants, compared to commercial distillation membranes. Moreover, real-world applicability of our membrane is demonstrated by processing sea water from Sydney Harbour over 72 h with macroscale membrane size of 4 cm 2 , processing ~0.5 L per day. Numerical simulations show that the channels between the mismatched grains serve as an effective water permeation route. Our research will pave the way for large-scale graphene-based antifouling membranes for diverse water treatment applications

    Retinal microvascular parameters are not associated with reduced renal function in a study of individuals with type 2 diabetes

    Get PDF
    Abstract The eye provides an opportunistic “window” to view the microcirculation. There is published evidence of an association between retinal microvascular calibre and renal function measured by estimated glomerular filtration rate (eGFR) in individuals with diabetes mellitus. Beyond vascular calibre, few studies have considered other microvascular geometrical features. Here we report novel null findings for measures of vascular spread (vessel fractal dimension), tortuosity, and branching patterns and their relationship with renal function in type 2 diabetes over a mean of 3 years. We performed a nested case-control comparison of multiple retinal vascular parameters between individuals with type 2 diabetes and stable (non-progressors) versus declining (progressors) eGFR across two time points within a subset of 1072 participants from the GoDARTS study cohort. Retinal microvascular were measured using VAMPIRE 3.1 software. In unadjusted analyses and following adjustment for age, gender, systolic blood pressure, HbA1C, and diabetic retinopathy, no associations between baseline retinal vascular parameters and risk of eGFR progression were observed. Cross-sectional analysis of follow-up data showed a significant association between retinal arteriolar diameter and eGFR, but this was not maintained following adjustment. These findings are consistent with a lack of predictive capacity for progressive loss of renal function in type 2 diabetes

    A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study

    Get PDF
    Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10-6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations

    Forest Goers and Multidrug-Resistant Malaria in Cambodia: An Ethnographic Study.

    Get PDF
    Multidrug-resistant Plasmodium falciparum malaria on the Cambodia-Thailand border is associated with working in forested areas. Beyond broad recognition of "forest-going" as a risk factor for malaria, little is known about different forest-going populations in this region. In Oddar Meanchey Province in northwestern Cambodia, qualitative ethnographic research was conducted to gain an in-depth understanding of how different populations, mobility and livelihood patterns, and activities within the forest intersect with potentiate malaria risk and impact on the effectiveness of malaria control and elimination strategies. We found that most forest-going in this area is associated with obtaining precious woods, particularly Siamese rosewood. In the past, at-risk populations included large groups of temporary migrants. As timber supplies have declined, so have these large migrant groups. However, groups of local residents continue to go to the forest and are staying for longer. Most forest-goers had experienced multiple episodes of malaria and were well informed about malaria risk. However, economic realities mean that local residents continue to pursue forest-based livelihoods. Severe constraints of available vector control methods mean that forest-goers have limited capacity to prevent vector exposure. As forest-goers access the forest using many different entry and exit points, border screening and treatment interventions will not be feasible. Once in the forest, groups often converge in the same areas; therefore, interventions targeting the mosquito population may have a potential role. Ultimately, a multisectoral approach as well as innovative and flexible malaria control strategies will be required if malaria elimination efforts are to be successful

    Heme oxygenase-1 prevents smoke induced B-cell infiltrates: a role for regulatory T cells?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smoking is the most important cause for the development of COPD. Since not all smokers develop COPD, it is obvious that other factors must be involved in disease development. We hypothesize that heme oxygenase-1 (HO-1), a protective enzyme against oxidative stress and inflammation, is insufficiently upregulated in COPD.</p> <p>The effects of HO-1 modulation on cigarette smoke induced inflammation and emphysema were tested in a smoking mouse model.</p> <p>Methods</p> <p>Mice were either exposed or sham exposed to cigarette smoke exposure for 20 weeks. Cobalt protoporphyrin or tin protoporphyrin was injected during this period to induce or inhibit HO-1 activity, respectively. Afterwards, emphysema development, levels of inflammatory cells and cytokines, and the presence of B-cell infiltrates in lung tissue were analyzed.</p> <p>Results</p> <p>Smoke exposure induced emphysema and increased the numbers of inflammatory cells and numbers of B-cell infiltrates, as well as the levels of inflammatory cytokines in lung tissue. HO-1 modulation had no effects on smoke induced emphysema development, or the increases in neutrophils and macrophages and inflammatory cytokines. Interestingly, HO-1 induction prevented the development of smoke induced B-cell infiltrates and increased the levels of CD4<sup>+</sup>CD25<sup>+ </sup>T cells and Foxp3 positive cells in the lungs. Additionally, the CD4<sup>+</sup>CD25<sup>+ </sup>T cells correlated positively with the number of Foxp3 positive cells in lung tissue, indicating that these cells were regulatory T cells.</p> <p>Conclusion</p> <p>These results support the concept that HO-1 expression influences regulatory T cells and indicates that this mechanism is involved in the suppression of smoke induced B-cell infiltrates. The translation of this interaction to human COPD should now be pursued.</p

    A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development

    Get PDF
    Tobacco (Nicotiana tabacum L.) is a species in the large family of the Solanaceae and is important as an agronomic crop and as a model system in plant biotechnology. Despite its importance, only limited molecular marker resources are available that can be used for genome analysis, genetic mapping and breeding. We report here on the development and characterization of 5,119 new and functional microsatellite markers and on the generation of a high-resolution genetic map for the tetraploid tobacco genome. The genetic map was generated using an F2 mapping population derived from the intervarietal cross of Hicks Broadleaf × Red Russian and merges the polymorphic markers from this new set with those from a smaller set previously used to produce a lower density map. The genetic map described here contains 2,317 microsatellite markers and 2,363 loci, resulting in an average distance between mapped microsatellite markers which is less than 2 million base pairs or 1.5 cM. With this new and expanded marker resource, a sufficient number of markers are now available for multiple applications ranging from tobacco breeding to comparative genome analysis. The genetic map of tobacco is now comparable in marker density and resolution with the best characterized genomes of the Solanaceae: tomato and potato

    The dependence of dijet production on photon virtuality in ep collisions at HERA

    Get PDF
    The dependence of dijet production on the virtuality of the exchanged photon, Q^2, has been studied by measuring dijet cross sections in the range 0 < Q^2 < 2000 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 38.6 pb^-1. Dijet cross sections were measured for jets with transverse energy E_T^jet > 7.5 and 6.5 GeV and pseudorapidities in the photon-proton centre-of-mass frame in the range -3 < eta^jet <0. The variable xg^obs, a measure of the photon momentum entering the hard process, was used to enhance the sensitivity of the measurement to the photon structure. The Q^2 dependence of the ratio of low- to high-xg^obs events was measured. Next-to-leading-order QCD predictions were found to generally underestimate the low-xg^obs contribution relative to that at high xg^obs. Monte Carlo models based on leading-logarithmic parton-showers, using a partonic structure for the photon which falls smoothly with increasing Q^2, provide a qualitative description of the data.Comment: 35 pages, 6 eps figures, submitted to Eur.Phys.J.
    corecore