76 research outputs found
Multi-year Measurements of Black Carbon Aerosol over Barrow and Ny-Alesund in the Arctic
第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所1階交流アトリウ
Recommended from our members
Aerosol dynamics and dispersion of radioactive particles
In the event of a failure of a nuclear power plant with release of radioactive material into the atmosphere, dispersion modelling is used to understand how the released radioactivity is spread. For the dispersion of particles, Lagrangian particle dispersion models (LPDMs) are commonly used, in which model particles, representing the released material, are transported through the atmosphere. These model particles are usually inert and undergo only first-order processes such as dry deposition and simplified wet deposition along the path through the atmosphere. Aerosol dynamic processes including coagulation, condensational growth, chemical interactions, formation of new particles and interaction with new aerosol sources are usually neglected in such models. The objective of this study is to analyse the impact of these advanced aerosol dynamic processes if they were to be included in LPDM simulations for use in radioactive preparedness. In this investigation, a fictitious failure of a nuclear power plant is studied for three geographically and atmospherically different sites. The incident was simulated with a Lagrangian single-trajectory box model with a new simulation for each hour throughout a year to capture seasonal variability of meteorology and variation in the ambient aerosol. (a) We conclude that modelling of wet deposition by incorporating an advanced cloud parameterization is advisable, since it significantly influence simulated levels of airborne and deposited activity including radioactive hotspots, and (b) we show that inclusion of detailed ambient-aerosol dynamics can play a large role in the model result in simulations that adopt a more detailed representation of aerosol–cloud interactions. The results highlight a potential necessity for implementation of more detailed representation of general aerosol dynamic processes into LPDMs in order to cover the full range of possible environmental characteristics that can apply during a release of radionuclides into the atmosphere
A new aerosol wet removal scheme for the Lagrangian particle model FLEXPART v10
A new, more physically based wet removal scheme for aerosols has been implemented in the Lagrangian particle dispersion model FLEXPART. It uses three-dimensional cloud water fields from the European Centre for MediumRange Weather Forecasts (ECMWF) to determine cloud extent and distinguishes between in-cloud and below-cloud scavenging. The new in-cloud nucleation scavenging depends on cloud water phase (liquid, ice or mixed-phase), based on the aerosol's prescribed efficiency to serve as ice crystal nuclei and liquid water nuclei, respectively. The impaction scavenging scheme now parameterizes below-cloud removal as a function of aerosol particle size and precipitation type (snow or rain) and intensity. Sensitivity tests with the new scavenging scheme and comparisons with observational data were conducted for three distinct types of primary aerosols, which pose different challenges for modeling wet scavenging due to their differences in solubility, volatility and size distribution: (1) Cs-137 released during the Fukushima nuclear accident attached mainly to highly soluble sulphate aerosol particles, (2) black carbon (BC) aerosol particles, and (3) mineral dust. Calculated e-folding lifetimes of accumulation mode aerosols for these three aerosol types were 11.7, 16.0, and 31.6 days respectively, when well mixed in the atmosphere. These are longer lifetimes than those obtained by the previous removal schem, and, for mineral dust in particular, primarily result from very slow in-cloud removal, which globally is the primary removal mechanism for these accumulation mode particles. Calculated e-folding lifetimes in FLEXPART also have a strong size dependence, with the longest lifetimes found for the accumulation-mode aerosols. For example, for dust particles emitted at the surface the lifetimes were 13.8 days for particles with 1 aem diameter and a few hours for 10 aem particles. A strong size dependence in below-cloud scavenging, combined with increased dry removal, is the primary reason for the shorter lifetimes of the larger particles. The most frequent removal is in-cloud scavenging (85% of all scavenging events) but it occurs primarily in the free troposphere, while below-cloud removal is more frequent below 1000m (52% of all events) and can be important for the initial fate of species emitted at the surface, such as those examined here. For assumed realistic in-cloud removal efficiencies, both BC and sulphate have a slight overestimation of observed atmospheric concentrations (a factor of 1.6 and 1.2 respectively). However, this overestimation is largest close to the sources and thus appears more related to overestimated emissions rather than underestimated removal. The new aerosol wet removal scheme of FLEXPART incorporates more realistic information about clouds and aerosol properties and it compares better with both observed lifetimes and concentration than the old scheme.Peer reviewe
Organic coating on sulfate and soot particles during late Summer in the Svalbard Archipelago
14 pages, 8 figures, 1 table, supplement https://doi.org/10.5194/acp-19-10433-2019Interaction of anthropogenic particles with radiation and clouds plays an important role in Arctic climate change. The mixing state of aerosols is a key parameter to influence aerosol radiation and aerosol–cloud interactions. However, little is known of this parameter in the Arctic, preventing an accurate representation of this information in global models. Here we used transmission electron microscopy with energy-dispersive X-ray spectrometry, scanning electron microscopy, nanoscale secondary ion mass spectrometry, and atomic forces microscopy to determine the size and mixing state of individual sulfate and carbonaceous particles at 100 nm to 2 µm collected in the Svalbard Archipelago in summer. We found that 74 % by number of non-sea-salt sulfate particles were coated with organic matter (OM); 20 % of sulfate particles also had soot inclusions which only appeared in the OM coating. The OM coating is estimated to contribute 63 % of the particle volume on average. To understand how OM coating influences optical properties of sulfate particles, a Mie core–shell model was applied to calculate optical properties of individual sulfate particles. Our result shows that the absorption cross section of individual OM-coated particles significantly increased when assuming the OM coating as light-absorbing brown carbon. Microscopic observations here suggest that OM modulates the mixing structure of fine Arctic sulfate particles, which may determine their hygroscopicity and optical propertiesThis work was funded by the National Natural Science Foundation of China (41622504, 41575116, 31700475) and the Hundred Talents Program in Zhejiang University. Zongbo Shi acknowledges funding from NERC (NE/S00579X/1)Peer Reviewe
Individual Particle Characteristics, Optical Properties and Evolution of an Extreme Long‐Range Transported Biomass Burning Event in the European Arctic (Ny‐Ålesund, Svalbard Islands)
This paper reports an exceptional biomass burning (BB) advection event from Alaska registered at Ny‐Ålesund from 10 to 17 July 2015 with particular interest on the influence of the airborne particle characteristics on the optical properties of the aerosol during the event. To this purpose we considered two DEKATI 12‐stage aerosol samples spanning the entire advection and analyzed them by scanning electron microscopy techniques. Aerosol chemical data and microphysical properties were also evaluated in order to correlate any change of individual particle characteristics with the bulk properties of the aerosol. The results of individual particle analysis depict a complex event characterized by a first phase (P1) of massive input of BB carbonaceous particles (i.e., tar balls, popcorn refractory particles, and organic particles), and by a second phase (P2) dominated by inorganic salts. The peculiar feature of this BB event is the exceptionally large grain size of the subspherical organic particles at the beginning of the event with respect to the background. At these conditions a significant increase of the scattering efficiency may occur even for a small increase of the size parameter. Results of the simulation of the complex refractive indices (n‐ik) confirm this evaluation. Aerosol evolution during the event resulted from the combination of three distinct occurrences: (a) progressive rotation of air mass circulation toward non‐BB source areas, (b) development of a thick fog layer in the planetary boundary layer, and (c) sea salt spray direct advection of local/regional provenance
Effects of mixing state on optical and radiative properties of black carbon in the European Arctic
Atmospheric aging promotes internal mixing of black carbon (BC), leading to an enhancement of light absorption and radiative forcing. The relationship between BC mixing state and consequent absorption enhancement was never estimated for BC found in the Arctic region. In the present work, we aim to quantify the absorption enhancement and its impact on radiative forcing as a function of microphysical properties and mixing state of BC observed in situ at the Zeppelin Arctic station (78 degrees N) in the spring of 2012 during the CLIMSLIP (Climate impacts of short-lived pollutants in the polar region) project. Single-particle soot photometer (SP2) measurements showed a mean mass concentration of refractory black carbon (rBC) of 39 ngm(-3), while the rBC mass size distribution was of lognormal shape, peaking at an rBC mass-equivalent diameter (D-rBC) of around 240 nm. On average, the number fraction of particles containing a BC core with D-rBC > 80 nm was less than 5% in the size range (overall optical particle diameter) from 150 to 500 nm. The BC cores were internally mixed with other particulate matter. The median coating thickness of BC cores with 220 nm <D-rBC <260 nm was 52 nm, resulting in a core-shell diameter ratio of 1.4, assuming a coated sphere morphology. Combining the aerosol absorption coefficient observed with an Aethalometer and the rBC mass concentration from the SP2, a mass absorption cross section (MAC) of 9.8 m(2) g(-1) was inferred at a wavelength of 550 nm. Consistent with direct observation, a similar MAC value (8.4m(2) g(-1) at 550 nm) was obtained indirectly by using Mie theory and assuming a coated-sphere morphology with the BC mixing state constrained from the SP2 measurements. According to these calculations, the lensing effect is estimated to cause a 54% enhancement of the MAC compared to that of bare BC particles with equal BC core size distribution. Finally, the ARTDECO radiative transfer model was used to estimate the sensitivity of the radiative balance to changes in light absorption by BC as a result of a varying degree of internal mixing at constant total BC mass. The clear-sky noontime aerosol radiative forcing over a surface with an assumed wavelength-dependent albedo of 0.76-0.89 decreased, when ignoring the absorption enhancement, by -0.12 Wm(-2) compared to the base case scenario, which was constrained with mean observed aerosol properties for the Zeppelin site in Arctic spring. The exact magnitude of this forcing difference scales with environmental conditions such as the aerosol optical depth, solar zenith angle and surface albedo. Nevertheless, our investigation suggests that the absorption enhancement due to internal mixing of BC, which is a systematic effect, should be considered for quantifying the aerosol radiative forcing in the Arctic region.Peer reviewe
On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic
Several types of filter-based instruments are used to estimate aerosol light absorption coefficients. Two significant results are presented based on Aethalometer measurements at six Arctic stations from 2012 to 2014. First, an alternative method of post-processing the Aethalometer data is presented, which reduces measurement noise and lowers the detection limit of the instrument more effectively than box-car averaging. The biggest benefit of this approach can be achieved if instrument drift is minimised. Moreover, by using an attenuation threshold criterion for data post-processing, the relative uncertainty from the electronic noise of the instrument is kept constant. This approach results in a time series with a variable collection time (Delta t) but with a constant relative uncertainty with regard to electronic noise in the instrument. An additional advantage of this method is that the detection limit of the instrument will be lowered at small aerosol concentrations at the expense of temporal resolution, whereas there is little to no loss in temporal resolution at high aerosol concentrations (>2.1-6.7Mm(-1) as measured by the Aethalometers). At high aerosol concentrations, minimising the detection limit of the instrument is less critical. Additionally, utilising co-located filter-based absorption photometers, a correction factor is presented for the Arctic that can be used in Aethalometer corrections available in literature. The correction factor of 3.45 was calculated for low-elevation Arctic stations. This correction factor harmonises Aethalometer attenuation coefficients with light absorption coefficients as measured by the co-located light absorption photometers. Using one correction factor for Arctic Aethalometers has the advantage that measurements between stations become more inter-comparable.Peer reviewe
Simultaneous measurements of aerosol size distributions at three sites in the European high Arctic
19 pages, 9 figures, 1 tableAerosols are an integral part of the Arctic climate system due to their direct interaction with radiation and indirect interaction through cloud formation. Understanding aerosol size distributions and their dynamics is crucial for the ability to predict these climate relevant effects. When of favourable size and composition, both long-rangetransported-and locally formed particles-may serve as cloud condensation nuclei (CCN). Small changes of composition or size may have a large impact on the low CCN concentrations currently characteristic of the Arctic environment. We present a cluster analysis of particle size distributions (PSDs; size range 8-500 nm) simultaneously collected from three high Arctic sites during a 3-year period (2013-2015). Two sites are located in the Svalbard archipelago: Zeppelin research station (ZEP; 474 m above ground) and the nearby Gruvebadet Observatory (GRU; about 2 km distance from Zeppelin, 67 m above ground). The third site (Villum Research Station at Station Nord, VRS; 30 m above ground) is 600 km west-northwest of Zeppelin, at the tip of northeastern Greenland. The GRU site is included in an inter-site comparison for the first time. K-means cluster analysis provided eight specific aerosol categories, further combined into broad PSD classes with similar characteristics, namely pristine low concentrations (12 %-14 % occurrence), new particle formation (16 %-32 %), Aitken (21 %-35 %) and accumulation (20 %-50 %). Confined for longer time periods by consolidated pack sea ice regions, the Greenland site GRU shows PSDs with lower ultrafine-mode aerosol concentrations during summer but higher accumulation-mode aerosol concentrations during winter, relative to the Svalbard sites. By association with chemical composition and cloud condensation nuclei properties, further conclusions can be derived. Three distinct types of accumulation-mode aerosol are observed during winter months. These are associated with sea spray (largest detectable sizes, > 400 nm), Arctic haze (main mode at 150 nm) and aged accumulation-mode (main mode at 220 nm) aerosols. In contrast, locally produced particles, most likely of marine biogenic origin, exhibit size distributions dominated by the nucleation and Aitken mode during summer months. The obtained data and analysis point towards future studies, including apportioning the relative contribution of primary and secondary aerosol formation pro cesses and elucidating anthropogenic aerosol dynamics and transport and removal processes across the Greenland Sea. In order to address important research questions in the Arctic on scales beyond a singular station or measurement events, it is imperative to continue strengthening international scientific cooperationThis research has been supported by the Spanish Ministry of Economy through project BIO-NUC (CGL2013-49020-R), PI-ICE (CTM2017-89117-R) and the Ramon y Cajal fellowship (RYC-2012-11922). The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654109, the Danish Council for Independent Research (project NUMEN, DFF-FTP-4005-00485B) and previously from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262254. The work at Villum Research Station, Station Nord, was financially supported by the Danish Environmental Protection Agency via the MIKA/DANCEA funds for Environmental Support to the Arctic Region. The Villum Foundation funded the construction of Villum Research Station, Station Nord. CCN measurements are supported by a KOPRI program (PN19081), funded by a National Research Foundation of Korea grant (NRF-2016M1A5A1901769). The authors acknowledge financial support (to David C. S. Beddows) from the Natural Environment Research Council's funding of the National Centre for Atmospheric Science (NCAS) (grant number R8/H12/83/011)Peer Reviewe
Secondary aerosol formation in marine Arctic environments : a model measurement comparison at Ny-Ålesund
In this study, we modeled the aerosol particle formation along air mass trajectories arriving at the remote Arctic research stations Gruvebadet (67 m a.s.l) and Zeppelin (474 m a.s.l), Ny-Ålesund during May 2018. The aim of this study was to improve our understanding of processes governing secondary aerosol formation in remote Arctic marine environments. We run the Lagrangian chemistry transport model ADCHEM, along air mass trajectories generated with FLEXPART v10.4. The air masses arriving at Ny-Ålesund spend most of their time over the open ice-free ocean. In order to capture the secondary aerosol formation from the DMS emitted by phytoplankton on the ocean surface, we implemented a recently developed comprehensive DMS and halogen multi-phase oxidation chemistry scheme, coupled with the widely used Master Chemical Mechanism (MCM). The modeled median particle number size distributions are in close agreement with the observations in the marine influenced boundary layer at near sea surface Gruvebadet site. However, while the model reproduces the accumulation mode particle number concentrations at Zeppelin, it overestimates the Aitken mode particle number concentrations by a factor of ~5.5. We attribute this to the deficiency of the model to capture the complex orographic effects on the boundary layer dynamics at Ny-Ålesund. The model also reproduces the average vertical particle number concentration profiles within the boundary layer (0-600 m a.s.l.) above Gruvebadet, as measured with Condensation Particle Counters (CPCs) on board an Unmanned Aircraft Systems (UAS). The model successfully reproduces the observed Hoppel minima, often seen in particle number size distributions at Ny-Ålesund. The model also supports the previous experimental findings that ion mediated H2SO4-NH3 nucleation can explain the observed new particle formation in the marine Arctic boundary layer in the vicinity of Ny-Ålesund. Precursors resulting from gas and aqueous phase DMS chemistry contribute to the subsequent growth of the secondary aerosols. The growth of particles is primarily driven via H2SO4 condensation and formation of methane sulfonic acid (MSA) through the aqueous-phase ozonolysis of methane sulfinic acid (MSIA) in cloud and deliquescent droplets.Peer reviewe
A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation : insights from the Multidisciplinarydrifting Observatory for the Study of Arctic Climate (MOSAiC) expedition
The Arctic environment is rapidly changing due to accelerated warming in the region. The warming trend is driving a decline in sea ice extent, which thereby enhances feedback loops in the surface energy budget in the Arctic. Arctic aerosols play an important role in the radiative balance and hence the climate response in the region, yet direct observations of aerosols over the Arctic Ocean are limited. In this study, we investigate the annual cycle in the aerosol particle number size distribution (PNSD), particle number concentration (PNC), and black carbon (BC) mass concentration in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. This is the first continuous, year-long data set of aerosol PNSD ever collected over the sea ice in the central Arctic Ocean. We use a k-means cluster analysis, FLEXPART simulations, and inverse modeling to evaluate seasonal patterns and the influence of different source regions on the Arctic aerosol population. Furthermore, we compare the aerosol observations to land-based sites across the Arctic, using both long-term measurements and observations during the year of the MOSAiC expedition (2019-2020), to investigate interannual variability and to give context to the aerosol characteristics from within the central Arctic. Our analysis identifies that, overall, the central Arctic exhibits typical seasonal patterns of aerosols, including anthropogenic influence from Arctic haze in winter and secondary aerosol processes in summer. The seasonal pattern corresponds to the global radiation, surface air temperature, and timing of sea ice melting/freezing, which drive changes in transport patterns and secondary aerosol processes. In winter, the Norilsk region in Russia/Siberia was the dominant source of Arctic haze signals in the PNSD and BC observations, which contributed to higher accumulation-mode PNC and BC mass concentrations in the central Arctic than at land-based observatories. We also show that the wintertime Arctic Oscillation (AO) phenomenon, which was reported to achieve a record-breaking positive phase during January-March 2020, explains the unusual timing and magnitude of Arctic haze across the Arctic region compared to longer-term observations. In summer, the aerosol PNCs of the nucleation and Aitken modes are enhanced; however, concentrations were notably lower in the central Arctic over the ice pack than at land-based sites further south. The analysis presented herein provides a current snapshot of Arctic aerosol processes in an environment that is characterized by rapid changes, which will be crucial for improving climate model predictions, understanding linkages between different environmental processes, and investigating the impacts of climate change in future Arctic aerosol studies.Peer reviewe
- …