1,125 research outputs found

    Metallic 1T Phase, 3d1 Electronic Configuration and Charge Density Wave Order in Molecular Beam Epitaxy Grown Monolayer Vanadium Ditelluride.

    Get PDF
    We present a combined experimental and theoretical study of monolayer vanadium ditelluride, VTe2, grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Using various in situ microscopic and spectroscopic techniques, including scanning tunneling microscopy/spectroscopy, synchrotron X-ray and angle-resolved photoemission, and X-ray absorption, together with theoretical analysis by density functional theory calculations, we demonstrate direct evidence of the metallic 1T phase and 3d1 electronic configuration in monolayer VTe2 that also features a (4 × 4) charge density wave order at low temperatures. In contrast to previous theoretical predictions, our element-specific characterization by X-ray magnetic circular dichroism rules out a ferromagnetic order intrinsic to the monolayer. Our findings provide essential knowledge necessary for understanding this interesting yet less explored metallic monolayer in the emerging family of van der Waals magnets

    Correction to Metallic 1T Phase, 3d1 Electronic Configuration and Charge Density Wave Order in Molecular-Beam Epitaxy Grown Monolayer Vanadium Ditelluride.

    Get PDF
    It has been brought to our attention that a mistake exists in the author list. The author “Johnson Goh” in the original article should be “Kuan Eng Johnson Goh”. His primary corresponding email is [email protected]

    Survey on operating reserve procurement and pricing in deregulated electricity market environment

    Get PDF
    2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Procurement and pricing of operating reserves based on the Peak-Load Pricing Theory

    Get PDF
    2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Fjords as Aquatic Critical Zones (ACZs)

    Get PDF
    In recent decades, the land-ocean aquatic continuum, commonly defined as the interface, or transition zone, between terrestrial ecosystems and the open ocean, has undergone dramatic changes. On-going work has stressed the importance of treating Aquatic Critical Zones (ACZs) as a sensitive system needing intensive investigation. Here, we discuss fjords as an ACZ in the context of sedimentological, geochemical, and climatic impacts. These diverse physical features of fjords are key in controlling the sources, transport, and burial of organic matter in the modern era and over the Holocene. High sediment accumulation rates in fjord sediments allow for high-resolution records of past climate and environmental change where multiple proxies can be applied to fjord sediments that focus on either marine or terrestrial-derived components. Humans through land-use change and climatic stressors are having an impact on the larger carbon stores in fjords. Sediment delivery whether from accelerating erosion (e.g. mining, deforestation, road building, agriculture) or from sequestration of fluvial sediment behind dams has been seriously altered in the Anthropocene. Climate change affecting rainfall and river discharge into fjords will impact the thickness and extent of the low-salinity layer in the upper reaches of the fjord, slowing the rate of the overturning circulation and deep-water renewal – thereby impacting bottom water oxygen concentrations

    A shadowing problem in the detection of overlapping communities: lifting the resolution limit through a cascading procedure

    Get PDF
    Community detection is the process of assigning nodes and links in significant communities (e.g. clusters, function modules) and its development has led to a better understanding of complex networks. When applied to sizable networks, we argue that most detection algorithms correctly identify prominent communities, but fail to do so across multiple scales. As a result, a significant fraction of the network is left uncharted. We show that this problem stems from larger or denser communities overshadowing smaller or sparser ones, and that this effect accounts for most of the undetected communities and unassigned links. We propose a generic cascading approach to community detection that circumvents the problem. Using real and artificial network datasets with three widely used community detection algorithms, we show how a simple cascading procedure allows for the detection of the missing communities. This work highlights a new detection limit of community structure, and we hope that our approach can inspire better community detection algorithms.Comment: 14 pages, 12 figures + supporting information (5 pages, 6 tables, 3 figures

    Imaging the Two Gaps of the High-TC Superconductor Pb-Bi2Sr2CuO6+x

    Full text link
    The nature of the pseudogap state, observed above the superconducting transition temperature TC in many high temperature superconductors, is the center of much debate. Recently, this discussion has focused on the number of energy gaps in these materials. Some experiments indicate a single energy gap, implying that the pseudogap is a precursor state. Others indicate two, suggesting that it is a competing or coexisting phase. Here we report on temperature dependent scanning tunneling spectroscopy of Pb-Bi2Sr2CuO6+x. We have found a new, narrow, homogeneous gap that vanishes near TC, superimposed on the typically observed, inhomogeneous, broad gap, which is only weakly temperature dependent. These results not only support the two gap picture, but also explain previously troubling differences between scanning tunneling microscopy and other experimental measurements.Comment: 6 page

    Scaling, renormalization and statistical conservation laws in the Kraichnan model of turbulent advection

    Full text link
    We present a systematic way to compute the scaling exponents of the structure functions of the Kraichnan model of turbulent advection in a series of powers of ξ\xi, adimensional coupling constant measuring the degree of roughness of the advecting velocity field. We also investigate the relation between standard and renormalization group improved perturbation theory. The aim is to shed light on the relation between renormalization group methods and the statistical conservation laws of the Kraichnan model, also known as zero modes.Comment: Latex (11pt) 43 pages, 22 figures (Feynman diagrams). The reader interested in the technical details of the calculations presented in the paper may want to visit: http://www.math.helsinki.fi/mathphys/paolo_files/passive_scalar/passcal.htm

    Quasi-particle interference and superconducting gap in a high-temperature superconductor Ca2-xNaxCuO2Cl2

    Full text link
    High-transition-temperature (high-Tc) superconductivity is ubiquitous in the cuprates containing CuO2 planes but each cuprate has its own character. The study of the material dependence of the d-wave superconducting gap (SG) should provide important insights into the mechanism of high-Tc. However, because of the 'pseudogap' phenomenon, it is often unclear whether the energy gaps observed by spectroscopic techniques really represent the SG. Here, we report spectroscopic imaging scanning tunneling microscopy (SI-STM) studies of nearly-optimally-doped Ca2-xNaxCuO2Cl2 (Na-CCOC) with Tc = 25 ~ 28 K. They enable us to observe the quasi-particle interference (QPI) effect in this material, through which unambiguous new information on the SG is obtained. The analysis of QPI in Na-CCOC reveals that the SG dispersion near the gap node is almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level, while Tc of Bi2212 is 3 times higher than that of Na-CCOC. We also find that SG in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212. This explains at least in part the remarkable material dependence of TcComment: 13pages, 4fig
    corecore