Community detection is the process of assigning nodes and links in
significant communities (e.g. clusters, function modules) and its development
has led to a better understanding of complex networks. When applied to sizable
networks, we argue that most detection algorithms correctly identify prominent
communities, but fail to do so across multiple scales. As a result, a
significant fraction of the network is left uncharted. We show that this
problem stems from larger or denser communities overshadowing smaller or
sparser ones, and that this effect accounts for most of the undetected
communities and unassigned links. We propose a generic cascading approach to
community detection that circumvents the problem. Using real and artificial
network datasets with three widely used community detection algorithms, we show
how a simple cascading procedure allows for the detection of the missing
communities. This work highlights a new detection limit of community structure,
and we hope that our approach can inspire better community detection
algorithms.Comment: 14 pages, 12 figures + supporting information (5 pages, 6 tables, 3
figures