603 research outputs found

    Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars

    Full text link
    A knowledge of stellar ages is crucial for our understanding of many astrophysical phenomena, and yet ages can be difficult to determine. As they become older, stars lose mass and angular momentum, resulting in an observed slowdown in surface rotation. The technique of 'gyrochronology' uses the rotation period of a star to calculate its age. However, stars of known age must be used for calibration, and, until recently, the approach was untested for old stars (older than 1 gigayear, Gyr). Rotation periods are now known for stars in an open cluster of intermediate age (NGC 6819; 2.5 Gyr old), and for old field stars whose ages have been determined with asteroseismology. The data for the cluster agree with previous period-age relations, but these relations fail to describe the asteroseismic sample. Here we report stellar evolutionary modelling, and confirm the presence of unexpectedly rapid rotation in stars that are more evolved than the Sun. We demonstrate that models that incorporate dramatically weakened magnetic braking for old stars can---unlike existing models---reproduce both the asteroseismic and the cluster data. Our findings might suggest a fundamental change in the nature of ageing stellar dynamos, with the Sun being close to the critical transition to much weaker magnetized winds. This weakened braking limits the diagnostic power of gyrochronology for those stars that are more than halfway through their main-sequence lifetimes.Comment: 25 pages, 3 figures in main paper, 6 extended data figures, 1 table. Published in Nature, January 2016. Please see https://youtu.be/O6HzYgP5uyc for a video description of the resul

    Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs) are the single largest components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their contribution to the genome and transcriptome, however a detailed study of LTR-RTs in sugarcane has not been previously carried out.</p> <p>Results</p> <p>Sixty complete LTR-RT elements were classified into 35 families within four <it>Copia </it>and three <it>Gypsy </it>lineages. Structurally, within lineages elements were similar, between lineages there were large size differences. FISH analysis resulted in the expected pattern of <it>Gyps</it>y/heterochromatin, <it>Copia</it>/euchromatin, but in two lineages there was localized clustering on some chromosomes. Analysis of related ESTs and RT-PCR showed transcriptional variation between tissues and families. Four distinct patterns were observed in sRNA mapping, the most unusual of which was that of <it>Ale1</it>, with very large numbers of 24nt sRNAs in the coding region. The results presented support the conclusion that distinct small RNA-regulated pathways in sugarcane target the lineages of LTR-RT elements.</p> <p>Conclusions</p> <p>Individual LTR-RT sugarcane families have distinct structures, and transcriptional and regulatory signatures. Our results indicate that in sugarcane individual LTR-RT families have distinct behaviors and can potentially impact the genome in diverse ways. For instance, these transposable elements may affect nearby genes by generating a diverse set of small RNA's that trigger gene silencing mechanisms. There is also some evidence that ancestral genomes contribute significantly different element numbers from particular LTR-RT lineages to the modern sugarcane cultivar genome.</p

    Asteroseismology

    Full text link
    Asteroseismology is the determination of the interior structures of stars by using their oscillations as seismic waves. Simple explanations of the astrophysical background and some basic theoretical considerations needed in this rapidly evolving field are followed by introductions to the most important concepts and methods on the basis of example. Previous and potential applications of asteroseismology are reviewed and future trends are attempted to be foreseen.Comment: 38 pages, 13 figures, to appear in: "Planets, Stars and Stellar Systems", eds. T. D. Oswalt et al., Springer Verla

    Adjuvant radiotherapy for primary breast cancer in BRCA1 and BRCA2 mutation carriers and risk of contralateral breast cancer with special attention to patients irradiated at younger age

    Get PDF
    The purpose of this study was to estimate the influence of adjuvant radiotherapy for primary breast cancer (BC) on the risk of contralateral BC (CBC) in BRCA1 or BRCA2(BRCA1/2) mutation carriers, with special attention to patients irradiated at age younger than 40 years. Additionally, tendencies in locoregional treatments and rates of contralateral risk-reducing mastectomy over time were explored. In this retrospective cohort study, 691 BRCA1/2-associated BC patients treated between 1980 and 2013 were followed from diagnosis until CBC or censoring event including ipsilateral BC recurrence, distant metastasis, contralateral risk-reducing mastectomy, other invasive cancer diagnosis, death, or loss to follow up. Hazard ratios (HR) for CBC associated with radiotherapy were estimated using Cox regression. Median follow-up time was 8.6 years [range 0.3–34.3 years]. No association between radiotherapy for primary BC and risk of CBC was found, neither in the total population (HR 0.82, 95 % CI 0.45–1.49) nor in the subgroup of patients younger than 40 years at primary diagnosis (HR 1.36, 95 % CI 0.60–3.09). During follow-up, the number of patients at risk decreased substantially since a large proportion of patients were censored after contralateral risk-reducing mastectomy or BC recurrence. Over the years, increasing preference for mastectomy without radiotherapy compared to breast-conserving surgery with radiotherapy was found ranging from less than 30 % in 1995 to almost 50 % after 2010. The rate of contralateral risk-reducing mastectomy increased over the years from less than 40 % in 1995 to more than 60 % after 2010. In this cohort of BRCA1/2-associated BC patients, no association between radiotherapy for primary BC and risk of CBC was observed in the total group, nor in the patients irradiated before the age of 40 years. The number of patients at risk after 10 and 15 years of follow-up, however, was too small to definitively exclude harmful effects of adjuvant radiotherapy

    Evolutionary and pulsational properties of white dwarf stars

    Full text link
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    Solar-like oscillations in distant stars as seen by CoRoT : the special case of HD 42618, a solar sister

    Full text link
    We report the observations of a main-sequence star, HD 42618 (T[SUB]eff[/SUB] = 5765 K, G3V) by the space telescope CoRoT. This is the closest star to the Sun ever observed by CoRoT in term of its fundamental parameters. Using a preliminary version of CoRoT light curves of HD 42618, p modes are detected around 3.2 mHz associated to l = 0, 1 and 2 modes with a large spacing of 142 μHz. Various methods are then used to derive the mass and radius of this star (scaling relations from solar values as well as comparison between theoretical and observationnal frequencies) giving values in the range of (0.80 - 1.02)M[SUB]solar[/SUB] and (0.91 - 1.01)R[SUB]solar[/SUB]. A preliminary analysis of l = 0 and 1 modes allows us also to study the amount of penetrative convection at the base of the convective envelope

    Research into the Health Benefits of Sprint Interval Training Should Focus on Protocols with Fewer and Shorter Sprints

    Get PDF
    Over the past decade, it has been convincingly shown that regularly performing repeated brief supramaximal cycle sprints (sprint interval training [SIT]) is associated with aerobic adaptations and health benefits similar to or greater than with moderate-intensity continuous training (MICT). SIT is often promoted as a time-efficient exercise strategy, but the most commonly studied SIT protocol (4–6 repeated 30-s Wingate sprints with 4 min recovery, here referred to as ‘classic’ SIT) takes up to approximately 30 min per session. Combined with high associated perceived exertion, this makes classic SIT unsuitable as an alternative/adjunct to current exercise recommendations involving MICT. However, there are no indications that the design of the classic SIT protocol has been based on considerations regarding the lowest number or shortest duration of sprints to optimise time efficiency while retaining the associated health benefits. In recent years, studies have shown that novel SIT protocols with both fewer and shorter sprints are efficacious at improving important risk factors of noncommunicable diseases in sedentary individuals, and provide health benefits that are no worse than those associated with classic SIT. These shorter/easier protocols have the potential to remove many of the common barriers to exercise in the general population. Thus, based on the evidence summarised in this current opinion paper, we propose that there is a need for a fundamental change in focus in SIT research in order to move away from further characterising the classic SIT protocol and towards establishing acceptable and effective protocols that involve minimal sprint durations and repetitions

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Extremely short duration interval exercise improves 24-h glycaemia in men with type 2 diabetes

    Get PDF
    PurposeReduced-exertion high-intensity interval training (REHIT) is a genuinely time-efficient exercise intervention that improves aerobic capacity and blood pressure in men with type 2 diabetes. However, the acute effects of REHIT on 24-h glycaemia have not been examined.Methods11 men with type 2 diabetes (mean ± SD: age, 52 ± 6 years; BMI, 29.7 ± 3.1 kg/m2; HbA1c, 7.0 ± 0.8%) participated in a randomised, four-trial crossover study, with continual interstitial glucose measurements captured during a 24-h dietary-standardised period following either (1) no exercise (CON); (2) 30 min of continuous exercise (MICT); (3) 10 × 1 min at ~ 90 HRmax (HIIT; time commitment, ~ 25 min); and (4) 2 × 20 s ‘all-out’ sprints (REHIT; time commitment, 10 min).ResultsCompared to CON, mean 24-h glucose was lower following REHIT (mean ± 95%CI: − 0.58 ± 0.41 mmol/L, p = 0.008, d = 0.55) and tended to be lower with MICT (− 0.37 ± 0.41 mmol/L, p = 0.08, d = 0.35), but was not significantly altered following HIIT (− 0.37 ± 0.59 mmol/L, p = 0.31, d = 0.35). This seemed to be largely driven by a lower glycaemic response (area under the curve) to dinner following both REHIT and MICT (− 11%, p  0.9 for both) but not HIIT (− 4%, p = 0.22, d = 0.38). Time in hyperglycaemia appeared to be reduced with all three exercise conditions compared with CON (REHIT: − 112 ± 63 min, p = 0.002, d = 0.50; MICT: -115 ± 127 min, p = 0.08, d = 0.50; HIIT − 125 ± 122 min, p = 0.04, d = 0.54), whilst indices of glycaemic variability were not significantly altered.ConclusionREHIT may offer a genuinely time-efficient exercise option for improving 24-h glycaemia in men with type 2 diabetes and warrants further study
    corecore