3,288 research outputs found

    Clinical indicators for success of misoprostol treatment after early pregnancy failure

    Get PDF
    Objective To identify clinical indicators for success of misoprostol treatment after early pregnancy failure. Methods A total of 473 women with early pregnancy failure received 800 Îźg of vaginal misoprostol on treatment day 1. At the follow-up visit on day 3, a second dose was given if expulsion was incomplete. On day 8, vacuum aspiration was offered if expulsion had not occurred. Ultrasonography was used as gold standard for success. A Classification and Regression Tree analysis was undertaken to derive two decision trees for the success of misoprostol treatment on study days 3 and 8. Results Heavy bleeding after the first dose and an open cervical os were identified as clinical indicators of treatment success on day 3. Treatment success occurred in 84% of women with either or both indicators. Reporting passage of tissue after a second misoprostol dose and old blood in the vagina were potential indicators of treatment success or failure on day 8. A woman with either of these indicators has a 65% chance of treatment success after the second dose. Conversely, a woman with neither indicator on day 8 has a 94% chance of treatment failure. Conclusion Standard clinical findings may be useful as indicators for success or failure of medical management of early pregnancy failure in settings with limited or no access to ultrasonography. More research to identify even better indicators is warranted

    Effect of clear cutting on snow accumulation and water outflow at Fraser, Colorado

    Get PDF
    Employment and the journey to work have long been a focus of transportation study. Although today, the work trip accounts for a much smaller share of total trips than it did a few decades ago, there are several reasons why this subject deserves our continued attention.In planning for the journey to work, it is important to have an understanding of the anticipated growth in jobs in the coming years. Both the location of job growth and the types of jobs are important; the geographical distribution of jobs will affect transport needs, and different industries and occupations are associated with different land use patterns and transportation behaviors. This paper presents a review and analysis of California's job trends

    Design and construction of the MicroBooNE Cosmic Ray Tagger system

    Get PDF
    The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870

    A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber

    Full text link
    We have developed a convolutional neural network (CNN) that can make a pixel-level prediction of objects in image data recorded by a liquid argon time projection chamber (LArTPC) for the first time. We describe the network design, training techniques, and software tools developed to train this network. The goal of this work is to develop a complete deep neural network based data reconstruction chain for the MicroBooNE detector. We show the first demonstration of a network's validity on real LArTPC data using MicroBooNE collection plane images. The demonstration is performed for stopping muon and a νΟ\nu_\mu charged current neutral pion data samples

    Ionization Electron Signal Processing in Single Phase LArTPCs I. Algorithm Description and Quantitative Evaluation with MicroBooNE Simulation

    Full text link
    We describe the concept and procedure of drifted-charge extraction developed in the MicroBooNE experiment, a single-phase liquid argon time projection chamber (LArTPC). This technique converts the raw digitized TPC waveform to the number of ionization electrons passing through a wire plane at a given time. A robust recovery of the number of ionization electrons from both induction and collection anode wire planes will augment the 3D reconstruction, and is particularly important for tomographic reconstruction algorithms. A number of building blocks of the overall procedure are described. The performance of the signal processing is quantitatively evaluated by comparing extracted charge with the true charge through a detailed TPC detector simulation taking into account position-dependent induced current inside a single wire region and across multiple wires. Some areas for further improvement of the performance of the charge extraction procedure are also discussed.Comment: 60 pages, 36 figures. The second part of this work can be found at arXiv:1804.0258

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE
    • …
    corecore