58 research outputs found

    Inhibin B and anti-MĂŒllerian hormone as markers of gonadal function after hematopoietic cell transplantation during childhood

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is difficult to predict the reproductive capacity of children given hematopoietic cell transplantation (HCT) before pubertal age because the plasma concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are not informative and no spermogram can be done.</p> <p>Methods</p> <p>We classified the gonadal function of 38 boys and 34 girls given HCT during childhood who had reached pubertal age according to their pubertal development and FSH and LH and compared this to their plasma inhibin B and anti-MĂŒllerian hormone (AMH).</p> <p>Results</p> <p>Ten (26%) boys had normal testicular function, 16 (42%) had isolated tubular failure and 12 (32%) also had Leydig cell failure. All 16 boys given melphalan had tubular failure. AMH were normal in 25 patients and decreased in 6, all of whom had increased FSH and low inhibin B.</p> <p>Seven (21%) girls had normal ovarian function, 11 (32%) had partial and 16 (47%) complete ovarian failure. 7/8 girls given busulfan had increased FSH and LH and 7/8 had low inhibin B. AMH indicated that ovarian function was impaired in all girls.</p> <p>FSH and inhibin B were negatively correlated in boys (P < 0.0001) and girls (P = 0.0006). Neither the age at HCT nor the interval between HCT and evaluation influenced gonadal function.</p> <p>Conclusion</p> <p>The concordance between FSH and inhibin B suggests that inhibin B may help in counselling at pubertal age. In boys, AMH were difficult to use as they normally decrease when testosterone increases at puberty. In girls, low AMH suggest that there is major loss of primordial follicles.</p

    Familial Glucocorticoid Receptor Haploinsufficiency by Non-Sense Mediated mRNA Decay, Adrenal Hyperplasia and Apparent Mineralocorticoid Excess

    Get PDF
    Primary glucocorticoid resistance (OMIM 138040) is a rare hereditary disease that causes a generalized partial insensitivity to glucocorticoid action, due to genetic alterations of the glucocorticoid receptor (GR). Investigation of adrenal incidentalomas led to the discovery of a family (eight affected individuals spanning three generations), prone to cortisol resistance, bilateral adrenal hyperplasia, arterial hypertension and hypokalemia. This phenotype exacerbated over time, cosegregates with the first heterozygous nonsense mutation p.R469[R,X] reported to date for the GR, replacing an arginine (CGA) by a stop (TGA) at amino-acid 469 in the second zinc finger of the DNA-binding domain of the receptor. In vitro, this mutation leads to a truncated 50-kDa GR lacking hormone and DNA binding capacity, devoid of hormone-dependent nuclear translocation and transactivation properties. In the proband's fibroblasts, we provided evidence for the lack of expression of the defective allele in vivo. The absence of detectable mutated GR mRNA was accompanied by a 50% reduction in wild type GR transcript and protein. This reduced GR expression leads to a significantly below-normal induction of glucocorticoid-induced target genes, FKBP5 in fibroblasts. We demonstrated that the molecular mechanisms of glucocorticoid signaling dysfunction involved GR haploinsufficiency due to the selective degradation of the mutated GR transcript through a nonsense-mediated mRNA Decay that was experimentally validated on emetine-treated propositus' fibroblasts. GR haploinsufficiency leads to hypertension due to illicit occupation of renal mineralocorticoid receptor by elevated cortisol rather than to increased mineralocorticoid production reported in primary glucocorticoid resistance. Indeed, apparent mineralocorticoid excess was demonstrated by a decrease in urinary tetrahydrocortisone-tetrahydrocortisol ratio in affected patients, revealing reduced glucocorticoid degradation by renal activity of the 11ÎČ-hydroxysteroid dehydrogenase type 2, a GR regulated gene. We propose thus that GR haploinsufficiency compromises glucocorticoid sensitivity and may represent a novel genetic cause of subclinical hypercortisolism, incidentally revealed bilateral adrenal hyperplasia and mineralocorticoid-independent hypertension

    Normosmic Congenital Hypogonadotropic Hypogonadism Due to TAC3/TACR3 Mutations: Characterization of Neuroendocrine Phenotypes and Novel Mutations

    Get PDF
    CONTEXT: TAC3/TACR3 mutations have been reported in normosmic congenital hypogonadotropic hypogonadism (nCHH) (OMIM #146110). In the absence of animal models, studies of human neuroendocrine phenotypes associated with neurokinin B and NK3R receptor dysfunction can help to decipher the pathophysiology of this signaling pathway. OBJECTIVE: To evaluate the prevalence of TAC3/TACR3 mutations, characterize novel TACR3 mutations and to analyze neuroendocrine profiles in nCHH caused by deleterious TAC3/TACR3 biallelic mutations. RESULTS: From a cohort of 352 CHH, we selected 173 nCHH patients and identified nine patients carrying TAC3 or TACR3 variants (5.2%). We describe here 7 of these TACR3 variants (1 frameshift and 2 nonsense deleterious mutations and 4 missense variants) found in 5 subjects. Modeling and functional studies of the latter demonstrated the deleterious consequence of one missense mutation (Tyr267Asn) probably caused by the misfolding of the mutated NK3R protein. We found a statistically significant (p<0.0001) higher mean FSH/LH ratio in 11 nCHH patients with TAC3/TACR3 biallelic mutations than in 47 nCHH patients with either biallelic mutations in KISS1R, GNRHR, or with no identified mutations and than in 50 Kallmann patients with mutations in KAL1, FGFR1 or PROK2/PROKR2. Three patients with TAC3/TACR3 biallelic mutations had an apulsatile LH profile but low-frequency alpha-subunit pulses. Pulsatile GnRH administration increased alpha-subunit pulsatile frequency and reduced the FSH/LH ratio. CONCLUSION: The gonadotropin axis dysfunction associated with nCHH due to TAC3/TACR3 mutations is related to a low GnRH pulsatile frequency leading to a low frequency of alpha-subunit pulses and to an elevated FSH/LH ratio. This ratio might be useful for pre-screening nCHH patients for TAC3/TACR3 mutations

    Modulation of Brain ÎČ-Endorphin Concentration by the Specific Part of the Y Chromosome in Mice

    Get PDF
    International audienceBackground: Several studies in animal models suggest a possible effect of the specific part of the Y-chromosome (Y NPAR) on brain opioid, and more specifically on brain b-endorphin (BE). In humans, male prevalence is found in autistic disorder in which observation of abnormal peripheral or central BE levels are also reported. This suggests gender differences in BE associated with genetic factors and more precisely with Y NPAR. Methodology/Principal Findings: Brain BE levels and plasma testosterone concentrations were measured in two highly inbred strains of mice, NZB/BlNJ (N) and CBA/HGnc (H), and their consomic strains for the Y NPAR. An indirect effect of the Y NPAR on brain BE level via plasma testosterone was also tested by studying the correlation between brain BE concentration and plasma testosterone concentration in eleven highly inbred strains. There was a significant and major effect (P,0.0001) of the Y NPAR in interaction with the genetic background on brain BE levels. Effect size calculated using Cohen's procedure was large (56% of the total variance). The variations of BE levels were not correlated with plasma testosterone which was also dependent of the Y NPAR. Conclusions/Significance: The contribution of Y NPAR on brain BE concentration in interaction with the genetic background is the first demonstration of Y-chromosome mediated control of brain opioid. Given that none of the genes encompassed by the Y NPAR encodes for BE or its precursor, our results suggest a contribution of the sex-determining region (Sry, carried by Y NPAR) to brain BE concentration. Indeed, the transcription of the Melanocortin 2 receptor gene (Mc2R gene, identified as the proopiomelanocortin receptor gene) depends on the presence of Sry and BE is derived directly from proopiomelanocortin. The results shed light on the sex dependent differences in brain functioning and the role of Sry in the BE system might be related to the higher frequency of autistic disorder in males

    Pain Reactivity and Plasma ÎČ-Endorphin in Children and Adolescents with Autistic Disorder

    Get PDF
    International audienceBackground: Reports of reduced pain sensitivity in autism have prompted opioid theories of autism and have practical care ramifications. Our objective was to examine behavioral and physiological pain responses, plasma ÎČ-endorphin levels and their relationship in a large group of individuals with autism.Methodology/Principal Findings: The study was conducted on 73 children and adolescents with autism and 115 normal individuals matched for age, sex and pubertal stage. Behavioral pain reactivity of individuals with autism was assessed in three observational situations (parents at home, two caregivers at day-care, a nurse and child psychiatrist during blood drawing), and compared to controls during venepuncture. Plasma ÎČ-endorphin concentrations were measured by radioimmunoassay. A high proportion of individuals with autism displayed absent or reduced behavioral pain reactivity at home (68.6%), at day-care (34.2%) and during venepuncture (55.6%). Despite their high rate of absent behavioral pain reactivity during venepuncture (41.3 vs. 8.7% of controls, P<0.0001), individuals with autism displayed a significantly increased heart rate in response to venepuncture (P<0.05). Moreover, this response (Δ heart rate) was significantly greater than for controls (mean±SEM; 6.4±2.5 vs. 1.3±0.8 beats/min, P<0.05). Plasma ÎČ-endorphin levels were higher in the autistic group (P<0.001) and were positively associated with autism severity (P<0.001) and heart rate before or after venepuncture (P<0.05), but not with behavioral pain reactivity.Conclusions/Significance: The greater heart rate response to venepuncture and the elevated plasma ÎČ-endorphin found in individuals with autism reflect enhanced physiological and biological stress responses that are dissociated from observable emotional and behavioral reactions. The results suggest strongly that prior reports of reduced pain sensitivity in autism are related to a different mode of pain expression rather than to an insensitivity or endogenous analgesia, and do not support opioid theories of autism. Clinical care practice and hypotheses regarding underlying mechanisms need to assume that children with autism are sensitive to pain

    Approches d'immunothérapie anti-mélanome sur la base de l'inhibition du facteur de croissance IGF-1 modulant l'expression du CD9

    No full text
    Nous avons inhibé l expression de l insulin-like growth factor I sur une lignée de cellules de mélanome (la lignée B16-F0 des souris C57Bl/6). Les molécules impliquées dans l immunité (CMH-I, B7.1) n ont montré aucune variation d expression suite à la modulation de IGF-I. Par contre, la molécule de tétraspanine CD9, impliquée dans les interactions cellulaires, s est trouvée fortement inhibée. En parallÚle, l inoculation in vivo de la lignée modifiée (B16-F0.MOD) induit une diminution de la tumorigénicité et améliore la survie. La vaccination par B16-F0.MOD entraßne la formation d effecteurs humoraux lytiques en présence de complément dirigés contre la lignée parentale, mais également d effecteurs cellulaires. En particulier, la sous-population CD8+ a la capacité d inhiber la croissance tumorale in vivo et la prolifération cellulaire in vitro. En conclusion, l inhibition de l IGF-I a provoqué la production d effecteurs immuns anti-mélanomeWe developed a strategy of immunological treatment based on inhibition of the insulin-like growth factor I (IGF-I) in melanoma cell line (B16-F0 from C57Bl/6 mice). Immunological molecules (CMH-I, B7.1) weren t modulated by targeting IGF-I. On the other hand, downregulation of the tetraspanin molecule named CD9, implicated in cellular interactions, was observed. Moreover, delayed outgrowth and increased survival were evaluated after inoculation of modified cells in syngeneic hosts. Vaccines were realised using these blocked modified cells. Cytotoxic antibodies were shown to be present in the sera of mice that were able to lyse parental cells in the presence of rabbit complement. Moreover, spleen cells from CD8 subpopulation harvested from hosts vaccinated were able to inhibit in vivo outgrowth and in vitro proliferation of parental B16-F0. Consequently promising results were reported using IGF-I inhibition strategy leading to stimulate anti-melanoma immune effectorsPARIS-BIUP (751062107) / SudocSudocFranceF

    The MAOA rs979605 Genetic Polymorphism Is Differentially Associated with Clinical Improvement Following Antidepressant Treatment between Male and Female Depressed Patients

    No full text
    International audienceMajor depressive disorder (MDD) is the leading cause of disability worldwide. Treatment with antidepressant drugs (ATD), which target monoamine neurotransmitters including serotonin (5HT), are only modestly effective. Monoamine oxidase (MAO) metabolizes 5HT to 5-hydroxy indoleacetic acid (5HIAA). Genetic variants in the X-chromosome-linked MAO-encoding genes, MAOA and MAOB, have been associated with clinical improvement following ATD treatment in depressed patients. Our aim was to analyze the association of MAOA and MAOB genetic variants with (1) clinical improvement and (2) the plasma 5HIAA/5HT ratio in 6-month ATD-treated depressed individuals. Clinical (n = 378) and metabolite (n = 148) data were obtained at baseline and up to 6 months after beginning ATD treatment (M6) in patients of METADAP. Mixed-effects models were used to assess the association of variants with the Hamilton Depression Rating Scale (HDRS) score, response and remission rates, and the plasma 5HIAA/5HT ratio. Variant × sex interactions and dominance terms were included to control for X-chromosome-linked factors. The MAOA rs979605 and MAOB rs1799836 polymorphisms were analyzed. The sex × rs979605 interaction was significantly associated with the HDRS score (p = 0.012). At M6, A allele-carrying males had a lower HDRS score (n = 24, 10.9 ± 1.61) compared to AA homozygous females (n = 14, 18.1 ± 1.87; p = 0.0067). The rs1799836 polymorphism was significantly associated with the plasma 5HIAA/5HT ratio (p = 0.018). Overall, CC/C females/males had a lower ratio (n = 44, 2.18 ± 0.28) compared to TT/T females/males (n = 60, 2.79 ± 0.27; p = 0.047). The MAOA rs979605 polymorphism, associated with the HDRS score in a sex-dependent manner, could be a useful biomarker for the response to ATD treatment

    The <i>MAOA</i> rs979605 Genetic Polymorphism Is Differentially Associated with Clinical Improvement Following Antidepressant Treatment between Male and Female Depressed Patients

    No full text
    Major depressive disorder (MDD) is the leading cause of disability worldwide. Treatment with antidepressant drugs (ATD), which target monoamine neurotransmitters including serotonin (5HT), are only modestly effective. Monoamine oxidase (MAO) metabolizes 5HT to 5-hydroxy indoleacetic acid (5HIAA). Genetic variants in the X-chromosome-linked MAO-encoding genes, MAOA and MAOB, have been associated with clinical improvement following ATD treatment in depressed patients. Our aim was to analyze the association of MAOA and MAOB genetic variants with (1) clinical improvement and (2) the plasma 5HIAA/5HT ratio in 6-month ATD-treated depressed individuals. Clinical (n = 378) and metabolite (n = 148) data were obtained at baseline and up to 6 months after beginning ATD treatment (M6) in patients of METADAP. Mixed-effects models were used to assess the association of variants with the Hamilton Depression Rating Scale (HDRS) score, response and remission rates, and the plasma 5HIAA/5HT ratio. Variant × sex interactions and dominance terms were included to control for X-chromosome-linked factors. The MAOA rs979605 and MAOB rs1799836 polymorphisms were analyzed. The sex × rs979605 interaction was significantly associated with the HDRS score (p = 0.012). At M6, A allele-carrying males had a lower HDRS score (n = 24, 10.9 ± 1.61) compared to AA homozygous females (n = 14, 18.1 ± 1.87; p = 0.0067). The rs1799836 polymorphism was significantly associated with the plasma 5HIAA/5HT ratio (p = 0.018). Overall, CC/C females/males had a lower ratio (n = 44, 2.18 ± 0.28) compared to TT/T females/males (n = 60, 2.79 ± 0.27; p = 0.047). The MAOA rs979605 polymorphism, associated with the HDRS score in a sex-dependent manner, could be a useful biomarker for the response to ATD treatment
    • 

    corecore