1,309 research outputs found

    Pulmonary toxicity screening studies in male rats with TiO(2 )particulates substantially encapsulated with pyrogenically deposited, amorphous silica

    Get PDF
    The aim of this study was to evaluate the acute lung toxicity in rats of intratracheally instilled TiO(2 )particles that have been substantially encapsulated with pyrogenically deposited, amorphous silica. Groups of rats were intratracheally instilled either with doses of 1 or 5 mg/kg of hydrophilic Pigment A TiO(2 )particles or doses of 1 or 5 mg/kg of the following control or particle-types: 1) R-100 TiO(2 )particles (hydrophilic in nature); 2) quartz particles, 3) carbonyl iron particles. Phosphate-buffered saline (PBS) instilled rats served as additional controls. Following exposures, the lungs of PBS and particle-exposed rats were evaluated for bronchoalveolar lavage (BAL) fluid inflammatory markers, cell proliferation, and by histopathology at post-instillation time points of 24 hrs, 1 week, 1 month and 3 months. The bronchoalveolar lavage results demonstrated that lung exposures to quartz particles, at both concentrations but particularly at the higher dose, produced significant increases vs. controls in pulmonary inflammation and cytotoxicity indices. Exposures to Pigment A or R-100 TiO(2 )particles produced transient inflammatory and cell injury effects at 24 hours postexposure (pe), but these effects were not sustained when compared to quartz-related effects. Exposures to carbonyl iron particles or PBS resulted only in minor, short-term and reversible lung inflammation, likely related to the effects of the instillation procedure. Histopathological analyses of lung tissues revealed that pulmonary exposures to Pigment A TiO(2 )particles produced minor inflammation at 24 hours postexposure and these effects were not significantly different from exposures to R-100 or carbonyl iron particles. Pigment A-exposed lung tissue sections appeared normal at 1 and 3 months postexposure. In contrast, pulmonary exposures to quartz particles in rats produced a dose-dependent lung inflammatory response characterized by neutrophils and foamy (lipid-containing) alveolar macrophage accumulation as well as evidence of early lung tissue thickening consistent with the development of pulmonary fibrosis. Based on our results, we conclude the following: 1) Pulmonary instillation exposures to Pigment A TiO(2 )particles at 5 mg/kg produced a transient lung inflammatory response which was not different from the lung response to R-100 TiO(2 )particles or carbonyl iron particles; 2) the response to Pigment A was substantially less active in terms of inflammation, cytotoxicity, and fibrogenic effects than the positive control particle-type, quartz particles. Thus, based on the findings of this study, we would expect that inhaled Pigment A TiO(2 )particles would have a low risk potential for producing adverse pulmonary health effects

    Over-Selectivity is Related to Autism Quotient and Empathizing, But not to Systematizing

    Get PDF
    The relationships of autism quotient (AQ), systematizing (SQ), and empathizing (EQ), with over-selectivity were explored to assess whether over-selectivity is implicated in complex social skills, which has been assumed, but not experimentally examined. Eighty participants (aged 18–60) were trained on a simultaneous discrimination task (AB+CD−), and tested in extinction on the degree to which they had learned about both elements of the reinforced (AB) compound. Higher AQ and lower EQ scorers demonstrated greater over-selectivity, but there was no relationship between SQ and over-selectivity. These results imply that high AQ scorers perform similarly to individuals with ASD on this cognitive task, and that over-selectivity may be related to some complex social skills, like empathy

    Comparison of the in vitro invasive capabilities of Plasmodium falciparum schizonts isolated by Percoll gradient or using magnetic based separation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Percoll gradient centrifugation is often used for synchronization, enrichment, or isolation of a particular stage of <it>Plasmodium falciparum</it>. However, Percoll, a hyperosmotic agent, may have harmful effects on the parasites. Magnetic bead column (MBC) separation has been used as an alternative. This is a report of a head-to-head comparison of the <it>in vitro </it>invasive capabilities of parasites isolated by either of the two methods.</p> <p>Methods</p> <p>The <it>P. falciparum </it>laboratory strain isolate 7G8 was grown <it>in vitro </it>using standard procedures and synchronized using 5% sorbitol. On separate days when the schizont parasitaemia was >1%, the culture was split and half was processed by Percoll gradient centrifugation and the other half by magnetic bead column separation. Both processed parasites were placed back in culture and allowed to invade new uninfected erythrocytes.</p> <p>Results</p> <p>In 10 paired assays, the mean efficiency of invasion of 7G8 parasites treated by Percoll gradient centrifugation was 35.8% that of those treated by magnetic bead column separation (95% CI, p = 0.00067) A paired <it>t </it>test with two tails was used for these comparisons.</p> <p>Conclusions</p> <p>In this comparison, magnetic bead column separation of 7G8 schizonts resulted in higher viability and efficiency of invasion than utilizing Percoll gradient centrifugation.</p

    Asteroseismology

    Full text link
    Asteroseismology is the determination of the interior structures of stars by using their oscillations as seismic waves. Simple explanations of the astrophysical background and some basic theoretical considerations needed in this rapidly evolving field are followed by introductions to the most important concepts and methods on the basis of example. Previous and potential applications of asteroseismology are reviewed and future trends are attempted to be foreseen.Comment: 38 pages, 13 figures, to appear in: "Planets, Stars and Stellar Systems", eds. T. D. Oswalt et al., Springer Verla

    Student midwives perspectives on the efficacy of feedback after objective structured clinical examination

    Get PDF
    Students’ experience of feedback is considered an indicator of the efficacy of the assessment process. Negative experiences of feedback are unproductive in terms of the likelihood that students will act upon and learn from assessment. To understand the impact of feedback on learning this study explored the experiences of student midwives after receiving feedback following Objective Structured Clinical Examination (OSCE). Data were collected from second year undergraduate student midwives who had recently completed OSCE, via a focus group. Students reported raised stress levels, concerns around legitimacy of feedback, and inconsistencies in the manner in which feedback was articulated. Assessment feedback in higher education should be used to empower students to become self-regulated learners. This is important for student midwives for whom a considerable amount of leaning is spent in practice. The study has implications for midwifery academics concerned with modes of assessment and quality of assessment feedback in midwifery education

    Large Anomalous Hall effect in a silicon-based magnetic semiconductor

    Full text link
    Magnetic semiconductors are attracting high interest because of their potential use for spintronics, a new technology which merges electronics and manipulation of conduction electron spins. (GaMn)As and (GaMn)N have recently emerged as the most popular materials for this new technology. While Curie temperatures are rising towards room temperature, these materials can only be fabricated in thin film form, are heavily defective, and are not obviously compatible with Si. We show here that it is productive to consider transition metal monosilicides as potential alternatives. In particular, we report the discovery that the bulk metallic magnets derived from doping the narrow gap insulator FeSi with Co share the very high anomalous Hall conductance of (GaMn)As, while displaying Curie temperatures as high as 53 K. Our work opens up a new arena for spintronics, involving a bulk material based only on transition metals and Si, and which we have proven to display a variety of large magnetic field effects on easily measured electrical properties.Comment: 19 pages with 5 figure

    ?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    Get PDF
    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA

    Inhibition of nuclear PTEN tyrosine phosphorylation enhances glioma radiation sensitivity through attenuated DNA repair

    Get PDF
    Ionizing radiation (IR) and chemotherapy are standard of care treatments for glioblastoma (GBM) patients and both result in DNA damage, however, the clinical efficacy is limited due to therapeutic resistance. We identified a mechanism of such resistance mediated by phosphorylation of PTEN on tyrosine 240 (pY240-PTEN) by FGFR2. pY240-PTEN is rapidly elevated and bound to chromatin through interaction with Ki-67 in response to IR treatment and facilitates the recruitment of RAD51 to promote DNA repair. Blocking Y240 phosphorylation confers radiation sensitivity to tumors and extends survival in GBM preclinical models. Y240FPten knock-in mice showed radiation sensitivity. These results suggest that FGFR-mediated pY240-PTEN is a key mechanism of radiation resistance and is an actionable target for improving radiotherapy efficacy
    • …
    corecore