234 research outputs found

    Parasitic nematode Meloidogyne incognita interactions with different Capsicum annum cultivars reveal the chemical constituents modulating root herbivory

    Get PDF
    Open Access Journal; Published online: 06 June 2017Plant volatile signatures are often used as cues by herbivores to locate their preferred hosts. Here, we report on the volatile organic compounds used by the subterranean root-knot nematode (RKN) Meloidogyne incognita for host location. We compared responses of infective second stage juveniles (J2s) to root volatiles of three cultivars and one accession of the solanaceous plant, Capsicum annum against moist sand in dual choice assays. J2s were more attracted to the three cultivars than to the accession, relative to controls. GC/MS analysis of the volatiles identified common constituents in each plant, five of which were identified as α-pinene, limonene, 2-methoxy-3-(1-methylpropyl)-pyrazine, methyl salicylate and tridecane. We additionally identified thymol as being specific to the accession. In dose-response assays, a blend of the five components elicited positive chemotaxis (71–88%), whereas individual components elicited varying responses; Methyl salicylate (MeSA) elicited the highest positive chemotaxis (70–80%), α-pinene, limonene and tridecane were intermediate (54–60%), and 2-methoxy- 3-(1-methylpropyl)-pyrazine the lowest (49–55%). In contrast, thymol alone or thymol combined with either the preferred natural plant root volatiles or the five-component synthetic blend induced negative chemotaxis. Our results provide insights into RKN-host plant interactions, creating new opportunities for plant breeding programmes towards management of RKNs

    The Effect of Endurance Training on Pulmonary V˙O2 Kinetics in Solid Organs Transplanted Recipients

    Get PDF
    BACKGROUND: We investigated the effects of single (SL-ET) and double leg (DL-ET) high-intensity interval training on O2 deficit (O2Def) and mean response time (MRT) during square-wave moderate-intensity exercise (DL-MOD), and on the amplitude of V˙O2p slow component (SCamp), during heavy intensity exercise (DL-HVY), on 33 patients (heart transplant = 13, kidney transplanted = 11 and liver transplanted = 9). METHODS: Patients performed DL incremental step exercise to exhaustion, two DL-MOD tests, and a DL-HVY trial before and after 24 sessions of SL-ET (n = 17) or DL-ET (n = 16). RESULTS: After SL-ET, O2Def, MRT and SCamp decreased by 16.4% ± 13.7 (p = 0.008), by 15.6% ± 13.7 (p = 0.004) and by 35% ± 31 (p = 0.002), respectively. After DL-ET, they dropped by 24.9% ± 16.2 (p < 0.0001), by 25.9% ± 13.6 (p < 0.0001) and by 38% ± 52 (p = 0.0003), respectively. The magnitude of improvement of O2Def, MRT, and SCamp was not significantly different between SL-ET and DL-ET after training. CONCLUSIONS: We conclude that SL-ET is as effective as DL-ET if we aim to improve V˙O2p kinetics in transplanted patients and suggest that the slower, V˙O2p kinetics is mainly caused by the impairment of peripherals exchanges likely due to the immunosuppressive medications and disuse

    Catalytic oxidation of thioanisole using oxovanadium (IV)‐functionalized electrospun polybenzimidazole nanofibers

    Get PDF
    Polybenzimidazole fibers, with an average diameter of 262 nm, were produced by the process of electrospinning. These fibers were used as a solid support material for the immobilization of oxovanadium(IV) which was achieved via a reaction with vanadyl sulfate. The oxovanadium(IV)-functionalized nanofibers were used as heterogeneous catalysts for the oxidation of thioanisole under both batch and pseudo-continuous flow conditions with great success. Under batch conditions near quantitative oxidation of thioanisole was achieved in under 90 min, even after four successive catalytic reactions. Under continuous conditions, excellent conversion of thioanisole was maintained throughout the period studied at flow rates of up to 2 mLh−1. This study, therefore, proposes that electrospun polybenzimidazole nanofibers, with their small diameters, impressive chemical and thermal stability, as well as coordinating benzimidazole group, may be a desirable support material for immobilization of homogeneous catalysts

    Oxovanadium (IV)-catalysed oxidation of dibenzothiophene and 4, 6-dimethyldibenzothiophene

    Get PDF
    The reaction between [VIVOSO4] and the tetradentate N2O2-donor Schiff base ligand, N,N-bis(o-hydroxybenzaldehyde)phenylenediamine (sal-HBPD), obtained by the condensation of salicylaldehyde and o-phenylenediamine in a molar ratio of 2 : 1 respectively, resulted in the formation of [VIVO(sal-HBPD)]. The molecular structure of [VIVO(sal-HBPD)] was determined by single crystal X-ray diffraction, and confirmed the distorted square pyramidal geometry of the complex with the N2O2 binding mode of the tetradentate ligand. The formation of the polymer-supported p[VIVO(sal-AHBPD)] proceeded via the nitrosation of sal-HBPD, followed by the reduction with hydrogen to form an amine group that was then linked to Merrifield beads followed by the reaction with [VIVOSO4]. XPS and EPR were used to confirm the presence of oxovanadium(IV) within the beads. The BET surface area and porosity of the heterogeneous catalyst p[VIVO(sal-AHBPD)] were found to be 6.9 m2 g−1 and 180.8 Å respectively. Microanalysis, TG, UV-Vis and FT-IR were used for further characterization of both [VIVO(sal-HBPD)] and p[VIVO(sal-AHBPD)]. Oxidation of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was investigated using [VIVO(sal-HBPD)] and p[VIVO(sal-AHBPD)] as catalysts. Progress for oxidation of these model compounds was monitored with a gas chromatograph fitted with a flame ionization detector. The oxidation products were characterized using gas chromatography-mass spectrometry, microanalysis and NMR. Dibenzothiophene sulfone (DBTO2) and 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO2) were found to be the main products of oxidation. Oxovanadium(IV) Schiff base microspherical beads, p[VIVO(sal-AHBPD)], were able to catalyse the oxidation of sulfur in dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) to a tune of 88.0% and 71.8% respectively after 3 h at 40 °C. These oxidation results show promise for potential application of this catalyst in the oxidative desulfurization of crude oils

    ABC transporter genes ABC-C6 and ABC-G33 alter plant-microbeparasite interactions in the rhizosphere

    Get PDF
    Open Access Journal; Published online: 27 Dec 2019Plants are master regulators of rhizosphere ecology, secreting a complex mixture of compounds into the soil, collectively termed plant root exudate. Root exudate composition is highly dynamic and functional, mediating economically important interactions between plants and a wide range of soil organisms. Currently we know very little about the molecular basis of root exudate composition, which is a key hurdle to functional exploitation of root exudates for crop improvement. Root expressed transporters modulate exudate composition and could be manipulated to develop beneficial plant root exudate traits. Using Virus Induced Gene silencing (VIGS), we demonstrate that knockdown of two root-expressed ABC transporter genes in tomato cv. Moneymaker, ABC-C6 and ABC-G33, alters the composition of semi-volatile compounds in collected root exudates. Root exudate chemotaxis assays demonstrate that knockdown of each transporter gene triggers the repulsion of economically relevant Meloidogyne and Globodera spp. plant parasitic nematodes, which are attracted to control treatment root exudates. Knockdown of ABC-C6 inhibits egg hatching of Meloidogyne and Globodera spp., relative to controls. Knockdown of ABC-G33 has no impact on egg hatching of Meloidogyne spp. but has a substantial inhibitory impact on egg hatching of G. pallida. ABC-C6 knockdown has no impact on the attraction of the plant pathogen Agrobacterium tumefaciens, or the plant growth promoting Bacillus subtilis, relative to controls. Silencing ABC-G33 induces a statistically significant reduction in attraction of B. subtilis, with no impact on attraction of A. tumefaciens. By inoculating selected differentially exuded compounds into control root exudates, we demonstrate that hexadecaonic acid and pentadecane are biologically relevant parasite repellents. ABC-C6 represents a promising target for breeding or biotechnology intervention strategies as gene knockdown leads to the repulsion of economically important plant parasites and retains attraction of the beneficial rhizobacterium B. subtilis. This study exposes the link between ABC transporters, root exudate composition, and ex planta interactions with agriculturally and economically relevant rhizosphere organisms, paving the way for new approaches to rhizosphere engineering and crop protection

    Adsorption and separation of platinum and palladium by polyamine functionalized polystyrene-based beads and nanofibers

    Get PDF
    Adsorption and separation of platinum and palladium chlorido species (PtCl62- and PdCl42-) on polystyrene beads as well as nanofibers functionalized with ammonium centres based on ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and tris-(2-aminoethyl)amine (TAEA) are described. The functionalized sorbent materials were characterized by microanalysis, SEM, XPS, BET and FTIR. The surface area of the functionalized fibers was in the range 69–241 m2/g while it was 73–107 m2/g for the beads. The adsorption and loading capacities of the sorption materials were investigated using both the batch and column studies at 1 M HCl concentration. The adsorption studies for both PtCl62- and PdCl42- on the different sorbent materials fit the Langmuir isotherm with R2 values >0.99. The highest loading capacity of Pt and Pd were 7.4 mg/g and 4.3 mg/g respectively for the nanofiber sorbent material based on ethylenediamine (EDA) while the beads with ethylenediamine (EDA) gave 1.0 mg/g and 0.2 mg/g for Pt and Pd respectively. Metals loaded on the sorbent materials were recovered by using 3% m/v thiourea solution as the eluting agent with quantitative desorption efficiency under the selected experimental conditions. Separation of platinum from palladium was partially achieved by selective stripping of PtCl62- with 0.5 M of NaClO4 in 1.0 M HCl while PdCl42- was eluted with 0.5 M thiourea in 1.0 M HCl. Separation of platinum from iridium and rhodium under 1 M HCl concentration was successful on triethylenetriamine (TETA)-functionalized Merrifield beads. This material (M-TETA) showed selectivity for platinum albeit the low loading capacity

    Imidazole-functionalized polymer microspheres and fibers–useful materials for immobilization of oxovanadium (IV) catalysts

    Get PDF
    Both polymer microspheres and microfibers containing the imidazole functionality have been prepared and used to immobilize oxovanadium(IV). The average diameters and BET surface areas of the microspheres were 322 ÎŒm and 155 m2 g−1 while the fibers were 1.85 ÎŒm and 52 m2 g−1, respectively. XPS and microanalysis confirmed the incorporation of imidazole and vanadium in the polymeric materials. The catalytic activity of both materials was evaluated using the hydrogen peroxide facilitated oxidation of thioanisole. The microspheres were applied in a typical laboratory batch reactor set-up and quantitative conversions (>99%) were obtained in under 240 min with turn-over frequencies ranging from 21.89 to 265.53 h−1, depending on the quantity of catalyst and temperature. The microspherical catalysts also proved to be recyclable with no drop in activity being observed after three successive reactions. The vanadium functionalized fibers were applied in a pseudo continuous flow set-up. Factors influencing the overall conversion and product selectivity, including flow rate and catalyst quantity, were investigated. At flow rates of 1–4 mL h−1 near quantitative conversion was maintained over an extended period. Keeping the mass of catalyst constant (0.025 g) and varying the flow rate from 1–6 mL h−1 resulted in a shift in the formation of the oxidation product methyl phenyl sulfone from 60.1 to 18.6%

    The Large-Scale Polarization Explorer (LSPE)

    Full text link
    The LSPE is a balloon-borne mission aimed at measuring the polarization of the Cosmic Microwave Background (CMB) at large angular scales, and in particular to constrain the curl component of CMB polarization (B-modes) produced by tensor perturbations generated during cosmic inflation, in the very early universe. Its primary target is to improve the limit on the ratio of tensor to scalar perturbations amplitudes down to r = 0.03, at 99.7% confidence. A second target is to produce wide maps of foreground polarization generated in our Galaxy by synchrotron emission and interstellar dust emission. These will be important to map Galactic magnetic fields and to study the properties of ionized gas and of diffuse interstellar dust in our Galaxy. The mission is optimized for large angular scales, with coarse angular resolution (around 1.5 degrees FWHM), and wide sky coverage (25% of the sky). The payload will fly in a circumpolar long duration balloon mission during the polar night. Using the Earth as a giant solar shield, the instrument will spin in azimuth, observing a large fraction of the northern sky. The payload will host two instruments. An array of coherent polarimeters using cryogenic HEMT amplifiers will survey the sky at 43 and 90 GHz. An array of bolometric polarimeters, using large throughput multi-mode bolometers and rotating Half Wave Plates (HWP), will survey the same sky region in three bands at 95, 145 and 245 GHz. The wide frequency coverage will allow optimal control of the polarized foregrounds, with comparable angular resolution at all frequencies.Comment: In press. Copyright 2012 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibite

    Syntheses, protonation constants and antimicrobial activity of 2-substituted N-alkylimidazole derivatives

    Get PDF
    A series of N-alkylimidazole-2-carboxylic acid, N-alkylimidazole-2-carboxaldehyde and N-alkylimidazole-2-methanol derivatives [alkyl = benzyl, methyl, ethyl, propyl, butyl, heptyl, octyl and decyl] have been synthesized and the protonation constants determined. The antimicrobial properties of the compounds were tested against Gram-negative (Escherichi coli), Gram-positive (Staphylococcus aureus and Bacillus subtilis subsp. spizizenii) bacterial strains and yeast (C. albicans). Both the disk diffusion and broth microdilution methods for testing the antimicrobial activity showed that N-alkylation of imidazole with longer alkyl chains and the substitution with low pKa group at 2-position resulted in enhanced antimicrobial activity. Particularly, the N-alkylimidazole-2-carboxylic acids exhibited the best antimicrobial activity due to the low pKa of the carboxylic acid moiety. Generally, all the N-alkylimidazole derivatives were most active against the Gram-positive bacteria [S. aureus (MIC = 5–160 ”g mL–1) and B. subtilis subsp. spizizenii (5–20 ”g mL–1)], with the latter more susceptible. All the compounds showed poor antimicrobial activity against both Gram-negative (E. coli, MIC = 0.15 to >2500 ”g mL–1) bacteria and all the compounds were inactive against the yeast (Candida albicans)
    • 

    corecore