1,476 research outputs found
Effects of thermal and mechanical treatments on montmorillonite homoionized with mono- and polyvalent cations: Insight into the surface and structural changes
Smectite is a family of clay minerals that have important applications. In the majority of these clay minerals, the hydrated interlayer cations play a crucial role on the properties of the clay. Moreover, many studies have revealed that both thermal and grinding treatments affect the MMT structure and that interlayer cations play an important role in the degradation of the structure, primarily after mechanical treatment. In this study, the effects of these treatments on MMTs homoionized with mono (Na+, Li+ or K+) or polyvalent (Ca2+ or Al3+) cations were analyzed by the combination of a set of techniques that can reveal the difference of bulk phenomena from those produced on the surface of the particles. The thermal and mechanical (in an oscillating mill) treatments affected the framework composition and structure of the MMT, and the thermal treatment caused less drastic changes that the mechanical one. The effect of the interlayer cations is primarily due to the oxidation state and, to the size of the cations, which also influenced the disappearance of aluminum in the MMT tetrahedral sheet. These treatments caused a decrease in the surface area and an increase in the particle agglomeration and the isoelectric point. Both treatments caused the leaching of the framework aluminum. Furthermore, the mechanical treatment induced structural defects, such as the breakup of the particles, which favored the dehydroxylation and the increase of the isoelectric points of the montmorillonites.ANPCyT 1360/2006DGICYT FEDER CTQ 2010-1487
Towards a population of HMXB/NS microquasars as counterparts of low-latitude unidentified EGRET sources
The discovery of the microquasar LS 5039 well within the 95% conficence
contour of the Unidentified EGRET Source (UES) 3EG J1824-1514 was a major step
towards the possible association between microquasars (MQs) and UESs. The
recent discovery of precessing relativistic radio jets in LS I +61 303, a
source associated for long time with 2CG 135+01 and with the UES 3EG
J0241+6103, has given further support to this idea. Finally, the very recently
proposed association between the microquasar candidate AX J1639.0-4642 and the
UES 3EG J1639-4702 points towards a population of High Mass X-ray Binary
(HMXB)/Neutron Star (NS) microquasars as counterparts of low-latitude
unidentified EGRET sources.Comment: 12 pages, 7 figures. Proceedings of the Conference "The
Multiwavelength Approach to Unidentified Gamma-ray Sources", to appear in the
journal Astrophysics and Space Scienc
Інформаційне законодавство. Основні нормативні акти
Наведено основні нормативні акти з регулювання інформаційних відносин, зокрема, у сфері інформації, інформаційних агентств, телекомунікації,
радіочастотного ресурсу України, інформатизації, телебачення тощо.
Розраховано на студентів, які здобувають вищу освіту в галузях знань "Право", "Інформаційна безпека", "Комп'ютерні науки", "Телекомунікації"
Nonorientable spacetime tunneling
Misner space is generalized to have the nonorientable topology of a Klein
bottle, and it is shown that in a classical spacetime with multiply connected
space slices having such a topology, closed timelike curves are formed.
Different regions on the Klein bottle surface can be distinguished which are
separated by apparent horizons fixed at particular values of the two angular
variables that eneter the metric. Around the throat of this tunnel (which we
denote a Klein bottlehole), the position of these horizons dictates an ordinary
and exotic matter distribution such that, in addition to the known diverging
lensing action of wormholes, a converging lensing action is also present at the
mouths. Associated with this matter distribution, the accelerating version of
this Klein bottlehole shows four distinct chronology horizons, each with its
own nonchronal region. A calculation of the quantum vacuum fluctuations
performed by using the regularized two-point Hadamard function shows that each
chronology horizon nests a set of polarized hypersurfaces where the
renormalized momentum-energy tensor diverges. This quantum instability can be
prevented if we take the accelerating Klein bottlehole to be a generalization
of a modified Misner space in which the period of the closed spatial direction
is time-dependent. In this case, the nonchronal regions and closed timelike
curves cannot exceed a minimum size of the order the Planck scale.Comment: 11 pages, RevTex, Accepted in Phys. Rev.
Circumstellar interaction in supernovae in dense environments - an observational perspective
In a supernova explosion, the ejecta interacting with the surrounding
circumstellar medium (CSM) give rise to variety of radiation. Since CSM is
created from the mass lost from the progenitor star, it carries footprints of
the late time evolution of the star. This is one of the unique ways to get a
handle on the nature of the progenitor star system. Here, I will focus mainly
on the supernovae (SNe) exploding in dense environments, a.k.a. Type IIn SNe.
Radio and X-ray emission from this class of SNe have revealed important
modifications in their radiation properties, due to the presence of high
density CSM. Forward shock dominance of the X-ray emission, internal free-free
absorption of the radio emission, episodic or non-steady mass loss rate,
asymmetry in the explosion seem to be common properties of this class of SNe.Comment: Fixed minor typos. 31 pages, 9 figures, accepted for publication in
Space Science Reviews. Chapter in International Space Science Institute
(ISSI) Book on "Supernovae" to be published in Space Science Reviews by
Springe
Unfolding of differential energy spectra in the MAGIC experiment
The paper describes the different methods, used in the MAGIC experiment, to
unfold experimental energy distributions of cosmic ray particles (gamma-rays).
Questions and problems related to the unfolding are discussed. Various
procedures are proposed which can help to make the unfolding robust and
reliable. The different methods and procedures are implemented in the MAGIC
software and are used in most of the analyses.Comment: Submitted to NIM
Implementation of the Random Forest Method for the Imaging Atmospheric Cherenkov Telescope MAGIC
The paper describes an application of the tree classification method Random
Forest (RF), as used in the analysis of data from the ground-based gamma
telescope MAGIC. In such telescopes, cosmic gamma-rays are observed and have to
be discriminated against a dominating background of hadronic cosmic-ray
particles. We describe the application of RF for this gamma/hadron separation.
The RF method often shows superior performance in comparison with traditional
semi-empirical techniques. Critical issues of the method and its implementation
are discussed. An application of the RF method for estimation of a continuous
parameter from related variables, rather than discrete classes, is also
discussed.Comment: 16 pages, 8 figure
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
- …
