333 research outputs found

    CD98hc facilitates B cell proliferation and adaptive humoral immunity.

    Get PDF
    The proliferation of antigen-specific lymphocytes and resulting clonal expansion are essential for adaptive immunity. We report here that B cell-specific deletion of the heavy chain of CD98 (CD98hc) resulted in lower antibody responses due to total suppression of B cell proliferation and subsequent plasma cell formation. Deletion of CD98hc did not impair early B cell activation but did inhibit later activation of the mitogen-activated protein kinase Erk1/2 and downregulation of the cell cycle inhibitor p27. Reconstitution of CD98hc-deficient B cells with CD98hc mutants showed that the integrin-binding domain of CD98hc was required for B cell proliferation but that the amino acid-transport function of CD98hc was dispensable for this. Thus, CD98hc supports integrin-dependent rapid proliferation of B cells. We propose that the advantage of adaptive immunity favored the appearance of CD98hc in vertebrates

    Climate, history, society over the last millennium in southeast Africa

    Get PDF
    Climate variability has been causally linked to the transformation of society in pre-industrial southeast Africa. A growing critique, however, challenges the simplicity of ideas that identify climate as an agent of past societal change; arguing instead that the value of historical climate–society research lies in understanding human vulnerability and resilience, as well as how past societies framed, responded and adapted to climatic phenomena. We work across this divide to present the first critical analysis of climate–society relationships in southeast Africa over the last millennium. To achieve this, we review the now considerable body of scholarship on the role of climate in regional societal transformation, and bring forward new perspectives on climate–society interactions across three areas and periods using the theoretical frameworks of vulnerability and resilience. We find that recent advances in paleoclimatology and archaeology give weight to the suggestion that responses to climate variability played an important part in early state formation in the Limpopo valley (1000–1300), though evidence remains insufficient to clarify similar debates concerning Great Zimbabwe (1300–1450/1520). Written and oral evidence from the Zambezi-Save (1500–1830) and KwaZulu-Natal areas (1760–1828) nevertheless reveals a plurality of past responses to climate variability. These were underpinned by the organization of food systems, the role of climate-related ritual and political power, social networks, and livelihood assets and capabilities, as well as the nature of climate variability itself. To conclude, we identify new lines of research on climate, history and society, and discuss how these can more directly inform contemporary African climate adaptation challenges

    HUWE1 E3 ligase promotes PINK1/PARKINindependent mitophagy by regulating AMBRA1 activation via IKKa

    Get PDF
    The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKα kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKα are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells

    Impact Factor: outdated artefact or stepping-stone to journal certification?

    Full text link
    A review of Garfield's journal impact factor and its specific implementation as the Thomson Reuters Impact Factor reveals several weaknesses in this commonly-used indicator of journal standing. Key limitations include the mismatch between citing and cited documents, the deceptive display of three decimals that belies the real precision, and the absence of confidence intervals. These are minor issues that are easily amended and should be corrected, but more substantive improvements are needed. There are indications that the scientific community seeks and needs better certification of journal procedures to improve the quality of published science. Comprehensive certification of editorial and review procedures could help ensure adequate procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table

    Concurrence of Danish Dementia and Cataract: Insights from the Interactions of Dementia Associated Peptides with Eye Lens α-Crystallin

    Get PDF
    Familial Danish Dementia (FDD) is an autosomal disease, which is distinguished by gradual loss of vision, deafness, progressive ataxia and dementia. Cataract is the first manifestation of the disease. In this article, we demonstrate a specific correlation between the poisoning of the chaperone activity of the rat eye lens α-crystallins, loss of lens transparency in organ culture by the pathogenic form of the Danish dementia peptide, i.e. the reduced Danish dementia peptide (redADan peptide), by a combination of ex vivo, in vitro, biophysical and biochemical techniques. The interaction of redADan peptide and lens crystallins are very specific when compared with another chaperone, HSP-70, underscoring the specificity of the pathogenic form of Danish dementia peptide, redADan, for the early onset of cataract in this disease

    Testing for allergic disease: Parameters considered and test value

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Test results for allergic disease are especially valuable to allergists and family physicians for clinical evaluation, decisions to treat, and to determine needs for referral.</p> <p>Methods</p> <p>This study used a repeated measures design (conjoint analysis) to examine trade offs among clinical parameters that influence the decision of family physicians to use specific IgE blood testing as a diagnostic aid for patients suspected of having allergic rhinitis. Data were extracted from a random sample of 50 family physicians in the Southeastern United States. Physicians evaluated 11 patient profiles containing four clinical parameters: symptom severity (low, medium, high), symptom length (5, 10, 20 years), family history (both parents, mother, neither), and medication use (prescribed antihistamines, nasal spray, over-the-counter medications). Decision to recommend specific IgE testing was elicited as a "yes" or "no" response. Perceived value of specific IgE blood testing was evaluated according to usefulness as a diagnostic tool compared to skin testing, and not testing.</p> <p>Results</p> <p>The highest odds ratios (OR) associated with decisions to test for allergic rhinitis were obtained for symptom severity (OR, 12.11; 95%CI, 7.1–20.7) and length of symptoms (OR, 1.46; 95%CI, 0.96–2.2) with family history having significant influence in the decision. A moderately positive association between testing issues and testing value was revealed (β = 0.624, <it>t </it>= 5.296, <it>p </it>≤ 0.001) with 39% of the variance explained by the regression model.</p> <p>Conclusion</p> <p>The most important parameters considered when testing for allergic rhinitis relate to symptom severity, length of symptoms, and family history. Family physicians recognize that specific IgE blood testing is valuable to their practice.</p

    Invasive Salmonellosis among Children Admitted to a Rural Tanzanian Hospital and a Comparison with Previous Studies

    Get PDF
    BACKGROUND: The importance of invasive salmonellosis in African children is well recognized but there is inadequate information on these infections. We conducted a fever surveillance study in a Tanzanian rural hospital to estimate the case fraction of invasive salmonellosis among pediatric admissions, examine associations with common co-morbidities and describe its clinical features. We compared our main findings with those from previous studies among children in sub-Saharan Africa. METHODOLOGY/PRINCIPAL FINDINGS: From 1 March 2008 to 28 Feb 2009, 1,502 children were enrolled into the study. We collected clinical information and blood for point of care tests, culture, and diagnosis of malaria and HIV. We analyzed the clinical features on admission and outcome by laboratory-confirmed diagnosis. Pathogenic bacteria were isolated from the blood of 156 (10%) children, of which 14 (9%) were S. typhi, 45 (29%) were NTS and 97 (62%) were other pathogenic bacteria. Invasive salmonellosis accounted for 59/156 (38%) bacteremic children. Children with typhoid fever were significantly older and presented with a longer duration of fever. NTS infections were significantly associated with prior antimalarial treatment, malarial complications and with a high risk for death. CONCLUSIONS/SIGNIFICANCE: Invasive salmonellosis, particularly NTS infection, is an important cause of febrile disease among hospitalized children in our rural Tanzanian setting. Previous studies showed considerable variation in the case fraction of S. typhi and NTS infections. Certain suggestive clinical features (such as older age and long duration of fever for typhoid whereas concomitant malaria, anemia, jaundice and hypoglycemia for NTS infection) may be used to distinguish invasive salmonellosis from other severe febrile illness

    Synaptic tagging and capture in the living rat

    Get PDF
    In isolated hippocampal slices, decaying long-term potentiation can be stabilized and converted to late long-term potentiation lasting many hours, by prior or subsequent strong high-frequency tetanization of an independent input to a common population of neurons—a phenomenon known as ‘synaptic tagging and capture’. Here we show that the same phenomenon occurs in the intact rat. Late long-term potentiation can be induced in CA1 during the inhibition of protein synthesis if an independent input is strongly tetanized beforehand. Conversely, declining early long-term potentiation induced by weak tetanization can be converted into lasting late long-term potentiation by subsequent strong tetanization of a separate input. These findings indicate that synaptic tagging and capture is not limited to in vitro preparations; the past and future activity of neurons has a critical role in determining the persistence of synaptic changes in the living animal, thus providing a bridge between cellular studies of protein synthesis-dependent synaptic potentiation and behavioural studies of memory persistence

    Carotid Baroreflex Activation: Past, Present, and Future

    Get PDF
    Electrical activation of the carotid baroreceptor system is an attractive therapy for the treatment of resistant hypertension. In the past, several attempts were made to directly activate the baroreceptor system in humans, but the method had to be restricted to a few selected patients. Adverse effects, the need for better electrical devices and better surgical techniques, and the lack of knowledge about long-term effects has greatly hampered developments in this area for many years. Recently, a new and promising device was evaluated in a multicenter feasibility trial, which showed a clinically and statistically significant reduction in office systolic blood pressure (>20 mm Hg). This reduction could be sustained for at least 2 years with an acceptable safety profile. In the future, this new device may stimulate further application of electrical activation of the carotid baroreflex in treatment-resistant hypertension

    Distamycin A Inhibits HMGA1-Binding to the P-Selectin Promoter and Attenuates Lung and Liver Inflammation during Murine Endotoxemia

    Get PDF
    Background: The architectural transcription factor High Mobility Group-A1 (HMGA1) binds to the minor groove of AT-rich DNA and forms transcription factor complexes (“enhanceosomes”) that upregulate expression of select genes within the inflammatory cascade during critical illness syndromes such as acute lung injury (ALI). AT-rich regions of DNA surround transcription factor binding sites in genes critical for the inflammatory response. Minor groove binding drugs (MGBs), such as Distamycin A (Dist A), interfere with AT-rich region DNA binding in a sequence and conformation-specific manner, and HMGA1 is one of the few transcription factors whose binding is inhibited by MGBs. Objectives: To determine whether MGBs exert beneficial effects during endotoxemia through attenuating tissue inflammation via interfering with HMGA1-DNA binding and modulating expression of adhesion molecules. Methodology/Principal Findings: Administration of Dist A significantly decreased lung and liver inflammation during murine endotoxemia. In intravital microscopy studies, Dist A attenuated neutrophil-endothelial interactions in vivo following an inflammatory stimulus. Endotoxin induction of P-selectin expression in lung and liver tissue and promoter activity in endothelial cells was significantly reduced by Dist A, while E-selectin induction was not significantly affected. Moreover, Dist A disrupted formation of an inducible complex containing NF-κB that binds an AT-rich region of the P-selectin promoter. Transfection studies demonstrated a critical role for HMGA1 in facilitating cytokine and NF-κB induction of P-selectin promoter activity, and Dist A inhibited binding of HMGA1 to this AT-rich region of the P-selectin promoter in vivo. Conclusions/Significance: We describe a novel targeted approach in modulating lung and liver inflammation in vivo during murine endotoxemia through decreasing binding of HMGA1 to a distinct AT-rich region of the P-selectin promoter. These studies highlight the ability of MGBs to function as molecular tools for dissecting transcriptional mechanisms in vivo and suggest alternative treatment approaches for critical illness
    corecore