819 research outputs found

    Multiscale correlative tomography: an investigation of creep cavitation in 316 stainless steel

    Get PDF
    Creep cavitation in an ex-service nuclear steam header Type 316 stainless steel sample is investigated through a multiscale tomography workflow spanning eight orders of magnitude, combining X-ray computed tomography (CT), plasma focused ion beam (FIB) scanning electron microscope (SEM) imaging and scanning transmission electron microscope (STEM) tomography. Guided by microscale X-ray CT, nanoscale X-ray CT is used to investigate the size and morphology of cavities at a triple point of grain boundaries. In order to understand the factors affecting the extent of cavitation, the orientation and crystallographic misorientation of each boundary is characterised using electron backscatter diffraction (EBSD). Additionally, in order to better understand boundary phase growth, the chemistry of a single boundary and its associated secondary phase precipitates is probed through STEM energy dispersive X-ray (EDX) tomography. The difference in cavitation of the three grain boundaries investigated suggests that the orientation of grain boundaries with respect to the direction of principal stress is important in the promotion of cavity formation

    Nitrogen and phosphorus availability interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study

    Get PDF
    Nitrogen (N) and phosphorus (P) have key roles in leaf metabolism, resulting in a strong coupling of chemical composition traits to metabolic rates in field-based studies. However, in such studies, it is difficult to disentangle the effects of nutrient supply per se on trait-trait relationships. Our study assessed how high and low N (5 mM and 0.4 mM, respectively) and P (1 mM and 2 μM, respectively) supply in 37 species from six plant functional types (PTFs) affected photosynthesis (A) and respiration (R) (in darkness and light) in a controlled environment. Low P supply increased scaling exponents (slopes) of area-based log-log A-N or R-N relationships when N supply was not limiting, whereas there was no P effect under low N supply. By contrast, scaling exponents of A-P and R-P relationships were altered by P and N supply. Neither R : A nor light inhibition of leaf R was affected by nutrient supply. Light inhibition was 26% across nutrient treatments; herbaceous species exhibited a lower degree of light inhibition than woody species. Because N and P supply modulates leaf trait-trait relationships, the next generation of terrestrial biosphere models may need to consider how limitations in N and P availability affect trait-trait relationships when predicting carbon exchange

    Interstitial cystitis antiproliferative factor (APF) as a cell-cycle modulator

    Get PDF
    BACKGROUND: Interstitial cystitis (IC) is a chronic bladder disorder of unknown etiology. Antiproliferative factor (APF), a peptide found in the urine of IC patients, has previously been shown to decrease incorporation of thymidine by normal bladder epithelial cells. This study was performed to determine the effect of APF on the cell cycle of bladder epithelial cells so as to better understand its antiproliferative activity. METHODS: Explant cultures from normal bladder biopsy specimens were exposed to APF or mock control. DNA cytometry was performed using an automated image analysis system. Cell cycle phase fractions were calculated from the DNA frequency distributions and compared by two-way analysis of variance (ANOVA). RESULTS: APF exposure produced statistically significant increases in the proportion of tetraploid and hypertetraploid cells compared to mock control preparations, suggesting a G2 and/or M phase cell cycle block and the production of polyploidy. CONCLUSIONS: APF has a specific effect on cell cycle distributions. The presence of a peptide with this activity may contribute to the pathogenesis of interstitial cystitis through disruption of normal urothelial proliferation and repair processes

    Dental students’ perceptions of learning communication skills in a forum theatre-style teaching session on breaking bad news

    Get PDF
    Introduction: Communication skills are an integral component of dental undergraduate education. Due to the complex nature of these skills, didactic teaching methods used in other educational contexts can be limited. Interactive and participative methods rooted in modern adult learning theories, such as Forum Theatre, may be more effective in the teaching of communication skills. Aim: To explore the usefulness of Forum Theatre in teaching clinical undergraduate dental students how to break bad news to their patients.Methods: A purposive sample of 4th-year undergraduate dental students was invited to participate. An evaluation questionnaire was given to the students and collected after the Forum Theatre interactive session. Participants were asked to provide self-reported accounts on the most and least useful parts of the session, as well as the most important learning outcome. Usefulness of the session in clinical work, increasing confidence and ability in breaking bad news, were evaluated via a 5-point Likert-scale type question. Qualitative data were analysed using Framework Analysis to explore the themes found in the open-text component. Descriptive statistics were used to analyse the Likert-scale items.Results: One hundred and fifteen completed questionnaires were collected from the 2015 and 2016 classes. Most students gave the Forum Theatre session a rating of 3 or above on a 5-point Likert scale; indicating that they found it useful. Qualitative results also showed that most participants liked the teaching session thanks to its interactive nature, the use of actors and the input of the facilitators. The majority of students showed preference towards smaller groups which give everyone equal opportunity to participate without unnecessary repetition.Conclusion: The results seem to confirm previous findings. Students rated their learning experience involving Forum Theatre favourably. Smaller groups and trained facilitators are required for the success of this teaching method. Further research is needed to assess the long-term educational benefits of Forum Theatre.</p

    Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

    Get PDF
    Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin

    Neonatal-onset multisystem inflammatory disease responsive to interleukin-1 beta inhibition

    Get PDF
    BACKGROUND:Neonatal-onset multisystem inflammatory disease is characterized by fever, urticarial rash, aseptic meningitis, deforming arthropathy, hearing loss, and mental retardation. Many patients have mutations in the cold-induced autoinflammatory syndrome 1 (CIAS1) gene, encoding cryopyrin, a protein that regulates inflammation.METHODS:We selected 18 patients with neonatal-onset multisystem inflammatory disease (12 with identifiable CIAS1 mutations) to receive anakinra, an interleukin-1-receptor antagonist (1 to 2 mg per kilogram of body weight per day subcutaneously). In 11 patients, anakinra was withdrawn at three months until a flare occurred. The primary end points included changes in scores in a daily diary of symptoms, serum levels of amyloid A and C-reactive protein, and the erythrocyte sedimentation rate from baseline to month 3 and from month 3 until a disease flare.RESULTS:All 18 patients had a rapid response to anakinra, with disappearance of rash. Diary scores improved (P<0.001) and serum amyloid A (from a median of 174 mg to 8 mg per liter), C-reactive protein (from a median of 5.29 mg to 0.34 mg per deciliter), and the erythrocyte sedimentation rate decreased at month 3 (all P<0.001), and remained low at month 6. Magnetic resonance imaging showed improvement in cochlear and leptomeningeal lesions as compared with baseline. Withdrawal of anakinra uniformly resulted in relapse within days; retreatment led to rapid improvement. There were no drug-related serious adverse events.CONCLUSIONS:Daily injections of anakinra markedly improved clinical and laboratory manifestations in patients with neonatal-onset multisystem inflammatory disease, with or without CIAS1 mutations

    Developing community-driven quality improvement initiatives to enhance chronic disease care in Indigenous communities in Canada : the FORGE AHEAD program protocol

    Get PDF
    BACKGROUND: Given the dramatic rise and impact of chronic diseases and gaps in care in Indigenous peoples in Canada, a shift from the dominant episodic and responsive healthcare model most common in First Nations communities to one that places emphasis on proactive prevention and chronic disease management is urgently needed. METHODS: The Transformation of Indigenous Primary Healthcare Delivery (FORGE AHEAD) Program partners with 11 First Nations communities across six provinces in Canada to develop and evaluate community-driven quality improvement (QI) initiatives to enhance chronic disease care. FORGE AHEAD is a 5-year research program (2013-2017) that utilizes a pre-post mixed-methods observational design rooted in participatory research principles to work with communities in developing culturally relevant innovations and improved access to available services. This intensive program incorporates a series of 10 inter-related and progressive program activities designed to foster community-driven initiatives with type 2 diabetes mellitus as the action disease. Preparatory activities include a national community profile survey, best practice and policy literature review, and readiness tool development. Community-level intervention activities include community and clinical readiness consultations, development of a diabetes registry and surveillance system, and QI activities. With a focus on capacity building, all community-level activities are driven by trained community members who champion QI initiatives in their community. Program wrap-up activities include readiness tool validation, cost-analysis and process evaluation. In collaboration with Health Canada and the Aboriginal Diabetes Initiative, scale-up toolkits will be developed in order to build on lessons-learned, tools and methods, and to fuel sustainability and spread of successful innovations. DISCUSSION: The outcomes of this research program, its related cost and the subsequent policy recommendations, will have the potential to significantly affect future policy decisions pertaining to chronic disease care in First Nations communities in Canada. TRIAL REGISTRATION: Current ClinicalTrial.gov protocol ID NCT02234973 . Date of Registration: July 30, 2014

    The implications of the United Nations Paris Agreement on climate change for globally significant biodiversity areas

    Get PDF
    Climate change is already affecting species and their distributions. Distributional range changes have occurred and are projected to intensify for many widespread plants and animals, creating associated risks to many ecosystems. Here, we estimate the climate change-related risks to the species in globally significant biodiversity conservation areas over a range of climate scenarios, assessing their value as climate refugia. In particular, we quantify the aggregated benefit of countries’ emission reduction pledges (Intended Nationally Determined Contributions and Nationally Determined Contributions under the Paris Agreement), and also of further constraining global warming to 2 °C above pre-industrial levels, against an unmitigated scenario of 4.5 °C warming. We also quantify the contribution that can be made by using smart spatial conservation planning to facilitate some levels of autonomous (i.e. natural) adaptation to climate change by dispersal. We find that without mitigation, on average 33% of each conservation area can act as climate refugium (or 18% if species are unable to disperse), whereas if warming is constrained to 2 °C, the average area of climate refuges doubles to 67% of each conservation area (or, without dispersal, more than doubles to 56% of each area). If the country pledges are fulfilled, an intermediate estimate of 47–52% (or 31–38%, without dispersal) is obtained. We conclude that the Nationally Determined Contributions alone have important but limited benefits for biodiversity conservation, with larger benefits accruing if warming is constrained to 2 °C. Greater benefits would result if warming was constrained to well below 2 °C as set out in the Paris Agreement

    Predicting the Impact of Climate Change on Threatened Species in UK Waters

    Get PDF
    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina)

    Cytotoxic isolates of Helicobacter pylori from Peptic Ulcer Diseases decrease K(+)-dependent ATPase Activity in HeLa cells

    Get PDF
    BACKGROUND: Helicobacter pylori is a Gram negative bacterium that plays a central role in the etiology of chronic gastritis and peptic ulcer diseases. However, not all H. pylori positive cases develop advanced disease. This discriminatory behavior has been attributed to the difference in virulence of the bacteria. Among all virulence factors, cytotoxin released by H. pylori is the most important factor. In this work, we studied variation in H. pylori isolates from Indian dyspeptic patients on the basis of cytotoxin production and associated changes in K(+)-dependent ATPase (one of its targets) enzyme activity in HeLa cells. METHODS: The patients were retrospectively grouped on the basis of endoscopic and histopathological observation as having gastritis or peptic ulcer. The HeLa cells were incubated with the broth culture filtrates (BCFs) of H. pylori isolates from patients of both groups and observed for the cytopathic effects: morphological changes and viability. In addition, the K(+)-dependent ATPase activity was measured in HeLa cells extracts. RESULTS: The cytotoxin production was observed in 3/7 (gastritis) and 4/4 (peptic ulcer) H. pylori isolates. The BCFs of cytotoxin producing H. pylori strains reduced the ATPase activity of HeLa cells to 40% of that measured with non-cytotoxin producing H. pylori strains (1.33 μmole Pi/mg protein and 3.36 μmole Pi/mg protein, respectively, p < 0.05). The decreased activity of ATPase enzyme or the release of cytotoxin also correlated with the increased pathogenicity indices of the patients. CONCLUSIONS: Our results suggest that the isolation of cytotoxic H. pylori is more common in severe form of acid peptic diseases (peptic ulcer) than in gastritis patients from India. Also the cytotoxin released by H. pylori impairs the ion-transporting ATPase and is a measure of cytotoxicity
    corecore