43 research outputs found

    Discrepancies between survey and administrative data on the use of mental health services in the general population: findings from a study conducted in Québec

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Population surveys and health services registers are the main source of data for the management of public health. Yet, the validity of survey data on the use of mental health services has been questioned repeatedly due to the sensitive nature of mental illness and to the risk of recall bias. The main objectives of this study were to compare data on the use of mental health services from a large scale population survey and a national health services register and to identify the factors associated with the discrepancies observed between these two sources of data.</p> <p>Methods</p> <p>This study was based on the individual linkage of data from the cycle 1.2 of the Canadian Community Health Survey (CCHS-1.2) and from the health services register of the Régie de l'assurance maladie du Québec (RAMQ). The RAMQ is the governmental agency managing the Quebec national health insurance program. The analyses mostly focused on the 637 Quebecer respondents who were recorded as users of mental health services in the RAMQ and who were self-reported users or non users of these services in the CCHS-1.2.</p> <p>Results</p> <p>Roughly 75%, of those recorded as users of mental health services users in the RAMQ's register did not report using mental health services in the CCHS-1.2. The odds of disagreement between survey and administrative data were higher in seniors, individuals with a lower level of education, legal or de facto spouses and mothers of young children. They were lower in individuals with a psychiatric disorder and in frequent and more recent users of mental health services according to the RAMQ's register.</p> <p>Conclusions</p> <p>These findings support the hypotheses that social desirability and recall bias are likely to affect the self-reported use of mental health services in a population survey. They stress the need to refine the investigation of mental health services in population surveys and to combine survey and administrative data, whenever possible, to obtain an optimal estimation of the population need for mental health care.</p

    Anopheles larval abundance and diversity in three rice agro-village complexes Mwea irrigation scheme, central Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The diversity and abundance of <it>Anopheles </it>larvae has significant influence on the resulting adult mosquito population and hence the dynamics of malaria transmission. Studies were conducted to examine larval habitat dynamics and ecological factors affecting survivorship of aquatic stages of malaria vectors in three agro-ecological settings in Mwea, Kenya.</p> <p>Methods</p> <p>Three villages were selected based on rice husbandry and water management practices. Aquatic habitats in the 3 villages representing planned rice cultivation (Mbui Njeru), unplanned rice cultivation (Kiamachiri) and non-irrigated (Murinduko) agro-ecosystems were sampled every 2 weeks to generate stage-specific estimates of mosquito larval densities, relative abundance and diversity. Records of distance to the nearest homestead, vegetation coverage, surface debris, turbidity, habitat stability, habitat type, rice growth stage, number of rice tillers and percent <it>Azolla </it>cover were taken for each habitat.</p> <p>Results</p> <p>Captures of early, late instars and pupae accounted for 78.2%, 10.9% and 10.8% of the total <it>Anopheles </it>immatures sampled (n = 29,252), respectively. There were significant differences in larval abundance between 3 agro-ecosystems. The village with 'planned' rice cultivation had relatively lower <it>Anopheles </it>larval densities compared to the villages where 'unplanned' or non-irrigated. Similarly, species composition and richness was higher in the two villages with either 'unplanned' or limited rice cultivation, an indication of the importance of land use patterns on diversity of larval habitat types. Rice fields and associated canals were the most productive habitat types while water pools and puddles were important for short periods during the rainy season. Multiple logistic regression analysis showed that presence of other invertebrates, percentage <it>Azolla </it>cover, distance to nearest homestead, depth and water turbidity were the best predictors for <it>Anopheles </it>mosquito larval abundance.</p> <p>Conclusion</p> <p>These results suggest that agricultural practices have significant influence on mosquito species diversity and abundance and that certain habitat characteristics favor production of malaria vectors. These factors should be considered when implementing larval control strategies which should be targeted based on habitat productivity and water management.</p

    Improvements in access to malaria treatment in Tanzania following community, retail sector and health facility interventions -- a user perspective

    Get PDF
    BACKGROUND\ud \ud The ACCESS programme aims at understanding and improving access to prompt and effective malaria treatment. Between 2004 and 2008 the programme implemented a social marketing campaign for improved treatment-seeking. To improve access to treatment in the private retail sector a new class of outlets known as accredited drug dispensing outlets (ADDO) was created in Tanzania in 2006. Tanzania changed its first-line treatment for malaria from sulphadoxine-pyrimethamine (SP) to artemether-lumefantrine (ALu) in 2007 and subsidized ALu was made available in both health facilities and ADDOs. The effect of these interventions on understanding and treatment of malaria was studied in rural Tanzania. The data also enabled an investigation of the determinants of access to treatment.\ud \ud METHODS\ud \ud Three treatment-seeking surveys were conducted in 2004, 2006 and 2008 in the rural areas of the Ifakara demographic surveillance system (DSS) and in Ifakara town. Each survey included approximately 150 people who had suffered a fever case in the previous 14 days.\ud \ud RESULTS\ud \ud Treatment-seeking and awareness of malaria was already high at baseline, but various improvements were seen between 2004 and 2008, namely: better understanding causes of malaria (from 62% to 84%); an increase in health facility attendance as first treatment option for patients older than five years (27% to 52%); higher treatment coverage with anti-malarials (86% to 96%) and more timely use of anti-malarials (80% to 93-97% treatments taken within 24 hrs). Unfortunately, the change of treatment policy led to a low availability of ALu in the private sector and, therefore, to a drop in the proportion of patients taking a recommended malaria treatment (85% to 53%). The availability of outlets (health facilities or drug shops) is the most important determinant of whether patients receive prompt and effective treatment, whereas affordability and accessibility contribute to a lesser extent.\ud \ud CONCLUSIONS\ud \ud An integrated approach aimed at improving understanding and treatment of malaria has led to tangible improvements in terms of people's actions for the treatment of malaria. However, progress was hindered by the low availability of the first-line treatment after the switch to ACT

    A framework for assessing the feasibility of malaria elimination

    Get PDF
    The recent scale-up of malaria interventions, the ensuing reductions in the malaria burden, and reinvigorated discussions about global eradication have led many countries to consider malaria elimination as an alternative to maintaining control measures indefinitely. Evidence-based guidance to help countries weigh their options is thus urgently needed. A quantitative feasibility assessment that balances the epidemiological situation in a region, the strength of the public health system, the resource constraints, and the status of malaria control in neighboring areas can serve as the basis for robust, long-term strategic planning. Such a malaria elimination feasibility assessment was recently prepared for the Minister of Health in Zanzibar. Based on the Zanzibar experience, a framework is proposed along three axes that assess the technical requirements to achieve and maintain elimination, the operational capacity of the malaria programme and the public health system to meet those requirements, and the feasibility of funding the necessary programmes over time. Key quantitative and qualitative metrics related to each component of the assessment are described here along with the process of collecting data and interpreting the results. Although further field testing, validation, and methodological improvements will be required to ensure applicability in different epidemiological settings, the result is a flexible, rational methodology for weighing different strategic options that can be applied in a variety of contexts to establish data-driven strategic plans

    Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria

    Get PDF
    Malaria transmission is known to be strongly impacted by temperature. The current understanding of how temperature affects mosquito and parasite life history traits derives from a limited number of empirical studies. These studies, some dating back to the early part of last century, are often poorly controlled, have limited replication, explore a narrow range of temperatures, and use a mixture of parasite and mosquito species. Here, we use a single pairing of the Asian mosquito vector, An. stephensi and the human malaria parasite, P. falciparum to conduct a comprehensive evaluation of the thermal performance curves of a range of mosquito and parasite traits relevant to transmission. We show that biting rate, adult mortality rate, parasite development rate, and vector competence are temperature sensitive. Importantly, we find qualitative and quantitative differences to the assumed temperature-dependent relationships. To explore the overall implications of temperature for transmission, we first use a standard model of relative vectorial capacity. This approach suggests a temperature optimum for transmission of 29°C, with minimum and maximum temperatures of 12°C and 38°C, respectively. However, the robustness of the vectorial capacity approach is challenged by the fact that the empirical data violate several of the model's simplifying assumptions. Accordingly, we present an alternative model of relative force of infection that better captures the observed biology of the vector-parasite interaction. This model suggests a temperature optimum for transmission of 26°C, with a minimum and maximum of 17°C and 35°C, respectively. The differences between the models lead to potentially divergent predictions for the potential impacts of current and future climate change on malaria transmission. The study provides a framework for more detailed, system-specific studies that are essential to develop an improved understanding on the effects of temperature on malaria transmission
    corecore