23 research outputs found

    Killer immunoglobulin-like receptor and human leukocyte antigen-C genotypes in rheumatoid arthritis primary responders and non-responders to anti-TNF-α therapy

    Get PDF
    The identification of patients who will respond to anti-tumor necrosis factor alpha (anti-TNF-α) therapy will improve the efficacy, safety, and economic impact of these agents. We investigated whether killer cell immunoglobulin-like receptor (KIR) genes are related to response to anti-TNF-α therapy in patients with rheumatoid arthritis (RA). Sixty-four RA patients and 100 healthy controls were genotyped for 16 KIR genes and human leukocyte antigen-C (HLA-C) group 1/2 using polymerase chain reaction sequence-specific oligonucleotide probes (PCR-SSOP). Each patient received anti-TNF-α therapy (adalimumab, etanercept, or infliximab), and clinical responses were evaluated after 3 months using the disease activity score in 28 joints (DAS28). We investigated the correlations between the carriership of KIR genes, HLA-C group 1/2 genes, and clinical data with response to therapy. Patients responding to therapy showed a significantly higher frequency of KIR2DS2/KIR2DL2 (67.7% R vs. 33.3% NR; P = 0.012). A positive clinical outcome was associated with an activating KIR–HLA genotype; KIR2DS2(+)HLA-C group 1/2 homozygous. Inversely, non-response was associated with the relatively inhibitory KIR2DS2(–)HLA-C group 1/2 heterozygous genotype. The KIR and HLA-C genotype of an RA patient may provide predictive information for response to anti-TNF-α therapy

    Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Single nucleotide polymorphisms (SNPs) are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (<it>Pinus pinaster </it>Ait.), the main conifer used for commercial plantation in southwestern Europe.</p> <p>Results</p> <p>We designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 <it>in vitro </it>SNPs/Indels) and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 <it>in silico </it>SNPs/Indels). Offspring from three-generation outbred (G2) and inbred (F2) pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for <it>in silico </it>and <it>in vitro </it>SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a <it>Pinus taeda </it>linkage map, made it possible to align the 12 linkage groups of both species.</p> <p>Conclusions</p> <p>Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using new generation sequencing technologies and will include SNPs from comparative orthologous sequences that were identified in the present study, providing a wider collection of anchor points for comparative genomics among the conifers.</p

    A high-density transcript linkage map with 1,845 expressed genes positioned by microarray-based Single Feature Polymorphisms (SFP) in Eucalyptus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technological advances are progressively increasing the application of genomics to a wider array of economically and ecologically important species. High-density maps enriched for transcribed genes facilitate the discovery of connections between genes and phenotypes. We report the construction of a high-density linkage map of expressed genes for the heterozygous genome of <it>Eucalyptus </it>using Single Feature Polymorphism (SFP) markers.</p> <p>Results</p> <p>SFP discovery and mapping was achieved using pseudo-testcross screening and selective mapping to simultaneously optimize linkage mapping and microarray costs. SFP genotyping was carried out by hybridizing complementary RNA prepared from 4.5 year-old trees xylem to an SFP array containing 103,000 25-mer oligonucleotide probes representing 20,726 unigenes derived from a modest size expressed sequence tags collection. An SFP-mapping microarray with 43,777 selected candidate SFP probes representing 15,698 genes was subsequently designed and used to genotype SFPs in a larger subset of the segregating population drawn by selective mapping. A total of 1,845 genes were mapped, with 884 of them ordered with high likelihood support on a framework map anchored to 180 microsatellites with average density of 1.2 cM. Using more probes per unigene increased by two-fold the likelihood of detecting segregating SFPs eventually resulting in more genes mapped. <it>In silico </it>validation showed that 87% of the SFPs map to the expected location on the 4.5X draft sequence of the <it>Eucalyptus grandis </it>genome.</p> <p>Conclusions</p> <p>The <it>Eucalyptus </it>1,845 gene map is the most highly enriched map for transcriptional information for any forest tree species to date. It represents a major improvement on the number of genes previously positioned on <it>Eucalyptus </it>maps and provides an initial glimpse at the gene space for this global tree genome. A general protocol is proposed to build high-density transcript linkage maps in less characterized plant species by SFP genotyping with a concurrent objective of reducing microarray costs. HIgh-density gene-rich maps represent a powerful resource to assist gene discovery endeavors when used in combination with QTL and association mapping and should be especially valuable to assist the assembly of reference genome sequences soon to come for several plant and animal species.</p
    corecore