87 research outputs found

    Malaria Parasite Invasion of the Mosquito Salivary Gland Requires Interaction between the Plasmodium TRAP and the Anopheles Saglin Proteins

    Get PDF
    SM1 is a twelve-amino-acid peptide that binds tightly to the Anopheles salivary gland and inhibits its invasion by Plasmodium sporozoites. By use of UV-crosslinking experiments between the peptide and its salivary gland target protein, we have identified the Anopheles salivary protein, saglin, as the receptor for SM1. Furthermore, by use of an anti-SM1 antibody, we have determined that the peptide is a mimotope of the Plasmodium sporozoite Thrombospondin Related Anonymous Protein (TRAP). TRAP binds to saglin with high specificity. Point mutations in TRAP's binding domain A abrogate binding, and binding is competed for by the SM1 peptide. Importantly, in vivo down-regulation of saglin expression results in strong inhibition of salivary gland invasion. Together, the results suggest that saglin/TRAP interaction is crucial for salivary gland invasion by Plasmodium sporozoites

    Phase II study of continuous daily sunitinib dosing in patients with previously treated advanced non-small cell lung cancer

    Get PDF
    Background:Sunitinib malate (SUTENT) has promising single-agent activity given on Schedule 4/2 (4 weeks on treatment followed by 2 weeks off treatment) in advanced non-small cell lung cancer (NSCLC).Methods:We examined the activity of sunitinib on a continuous daily dosing (CDD) schedule in an open-label, multicentre phase II study in patients with previously treated, advanced NSCLC. Patients ⩾18 years with stage IIIB/IV NSCLC after failure with platinum-based chemotherapy, received sunitinib 37.5 mg per day. The primary end point was objective response rate (ORR). Secondary end points included progression-free survival (PFS), overall survival (OS), 1-year survival rate, and safety.Results:Of 47 patients receiving sunitinib, one patient achieved a confirmed partial response (ORR 2.1% (95% confidence interval (CI) 0.1, 11.3)) and 11 (23.4%) had stable disease (SD) ⩾8 weeks. Five patients had SD>6 months. Median PFS was 11.9 weeks (95% CI 8.6, 14.1) and median OS was 37.1 weeks (95% CI 31.1, 69.7). The 1-year survival probability was 38.4% (95% CI 24.2, 52.5). Treatment was generally well tolerated.Conclusions:The safety profile and time-to-event analyses, albeit relatively low response rate of 2%, suggest single-agent sunitinib on a CDD schedule may be a potential therapeutic agent for patients with advanced, refractory NSCLC

    The 4q12 Amplicon in Malignant Peripheral Nerve Sheath Tumors: Consequences on Gene Expression and Implications for Sunitinib Treatment

    Get PDF
    Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive tumors which originate from Schwann cells and develop in about 10% of neurofibromatosis type 1 (NF1) patients. The five year survival rate is poor and more effective therapies are needed. Sunitinib is a drug targeting receptor tyrosine kinases (RTK) like PDGFRα, c-Kit and VEGFR-2. These genes are structurally related and cluster on chromosomal segment 4q12.) was present in MPNST cell lines suggesting an autocrine loop. We show that VEGF triggered signal transduction via the MAPK pathway, which could be blocked by sunitinib. might serve as predictive markers for efficacy of sunitinib

    Circulating protein biomarkers of pharmacodynamic activity of sunitinib in patients with metastatic renal cell carcinoma: modulation of VEGF and VEGF-related proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sunitinib malate (SUTENT<sup>®</sup>) is an oral, multitargeted tyrosine kinase inhibitor, approved multinationally for the treatment of advanced RCC and of imatinib-resistant or – intolerant GIST. The purpose of this study was to explore potential biomarkers of sunitinib pharmacological activity via serial assessment of plasma levels of four soluble proteins from patients in a phase II study of advanced RCC: VEGF, soluble VEGFR-2 (sVEGFR-2), placenta growth factor (PlGF), and a novel soluble variant of VEGFR-3 (sVEGFR-3).</p> <p>Methods</p> <p>Sunitinib was administered at 50 mg/day on a 4/2 schedule (4 weeks on treatment, 2 weeks off treatment) to 63 patients with metastatic RCC after failure of first-line cytokine therapy. Predose plasma samples were collected on days 1 and 28 of each cycle and analyzed via ELISA.</p> <p>Results</p> <p>At the end of cycle 1, VEGF and PlGF levels increased >3-fold (relative to baseline) in 24/54 (44%) and 22/55 (40%) cases, respectively (P < 0.001). sVEGFR-2 levels decreased ≥ 30% in 50/55 (91%) cases and ≥ 20% in all cases (P < 0.001) during cycle 1, while sVEGFR-3 levels were decreased ≥ 30% in 48 of 55 cases (87%), and ≥ 20% in all but 2 cases. These levels tended to return to near-baseline after 2 weeks off treatment, indicating that these effects were dependent on drug exposure. Overall, significantly larger changes in VEGF, sVEGFR-2, and sVEGFR-3 levels were observed in patients exhibiting objective tumor response compared with those exhibiting stable disease or disease progression (P < 0.05 for each analyte; analysis not done for PlGF).</p> <p>Conclusion</p> <p>Sunitinib treatment in advanced RCC patients leads to modulation of plasma levels of circulating proteins involved in VEGF signaling, including soluble forms of two VEGF receptors. This panel of proteins may be of value as biomarkers of the pharmacological and clinical activity of sunitinib in RCC, and of angiogenic processes in cancer and other diseases.</p

    Geminin Is Required for Zygotic Gene Expression at the Xenopus Mid-Blastula Transition

    Get PDF
    In many organisms early development is under control of the maternal genome and zygotic gene expression is delayed until the mid-blastula transition (MBT). As zygotic transcription initiates, cell cycle checkpoints become activated and the tempo of cell division slows. The mechanisms that activate zygotic transcription at the MBT are incompletely understood, but they are of interest because they may resemble mechanisms that cause stem cells to stop dividing and terminally differentiate. The unstable regulatory protein Geminin is thought to coordinate cell division with cell differentiation. Geminin is a bi-functional protein. It prevents a second round of DNA replication during S and G2 phase by binding and inhibiting the essential replication factor Cdt1. Geminin also binds and inhibits a number of transcription factors and chromatin remodeling proteins and is thought to keep dividing cells in an undifferentiated state. We previously found that the cells of Geminin-deficient Xenopus embryos arrest in G2 phase just after the MBT then disintegrate at the onset of gastrulation. Here we report that they also fail to express most zygotic genes. The gene expression defect is cell-autonomous and is reproduced by over-expressing Cdt1 or by incubating the embryos in hydroxyurea. Geminin deficient and hydroxyurea-treated blastomeres accumulate DNA damage in the form of double stranded breaks. Bypassing the Chk1 pathway overcomes the cell cycle arrest caused by Geminin depletion but does not restore zygotic gene expression. In fact, bypassing the Chk1 pathway by itself induces double stranded breaks and abolishes zygotic transcription. We did not find evidence that Geminin has a replication-independent effect on transcription. We conclude that Geminin is required to maintain genome integrity during the rapid cleavage divisions, and that DNA damage disrupts zygotic gene transcription at the MBT, probably through activation of DNA damage checkpoint pathways

    Direct Visualization of Protease Action on Collagen Triple Helical Structure

    Get PDF
    Enzymatic processing of extracellular matrix (ECM) macromolecules by matrix metalloproteases (MMPs) is crucial in mediating physiological and pathological cell processes. However, the molecular mechanisms leading to effective physiological enzyme-ECM interactions remain elusive. Only scant information is available on the mode by which matrix proteases degrade ECM substrates. An example is the enzymatic degradation of triple helical collagen II fragments, generated by the collagenase MMP-8 cleavage, during the course of acute inflammatory conditions by gelatinase B/MMP-9. As is the case for many other matrix proteases, it is not clear how MMP-9 recognizes, binds and digests collagen in this important physiological process. We used single molecule imaging to directly visualize this protease during its interaction with collagen fragments. We show that the initial binding is mediated by the diffusion of the protease along the ordered helix on the collagen ¾ fragment, with preferential binding of the collagen tail. As the reaction progressed and prior to collagen degradation, gelatin-like morphologies resulting from the denaturation of the triple helical collagen were observed. Remarkably, this activity was independent of enzyme proteolysis and was accompanied by significant conformational changes of the working protease. Here we provide the first direct visualization of highly complex mechanisms of macromolecular interactions governing the enzymatic processing of ECM substrates by physiological protease

    Identification of Eps15 as Antigen Recognized by the Monoclonal Antibodies aa2 and ab52 of the Wuerzburg Hybridoma Library against Drosophila Brain

    Get PDF
    The Wuerzburg Hybridoma Library against the Drosophila brain represents a collection of around 200 monoclonal antibodies that bind to specific structures in the Drosophila brain. Here we describe the immunohistochemical staining patterns, the Western blot signals of one- and two-dimensional electrophoretic separation, and the mass spectrometric characterization of the target protein candidates recognized by the monoclonal antibodies aa2 and ab52 from the library. Analysis of a mutant of a candidate gene identified the Drosophila homolog of the Epidermal growth factor receptor Pathway Substrate clone 15 (Eps15) as the antigen for these two antibodies

    Cancer risk among users of neuroleptic medication: a population-based cohort study

    Get PDF
    It has been suggested that neuroleptic medication may decrease cancer risk. We compared cancer risks in a population-based cohort study of 25 264 users (⩾2 prescriptions) of neuroleptic medications in the county of North Jutland, Denmark, during 1989–2002, with that of county residents who did not receive such prescriptions. Statistical analyses were based on age-standardisation and Poisson regression analysis, adjusting for age, calendar period, COPD, liver cirrhosis or alcoholism, use of NSAID, and, for breast cancer, additionally for use of hormone therapy, age at first birth, and number of children. Use of neuroleptic medications was associated with a decreased risk for rectal cancer in both women and men (adjusted IRRs of 0.61 (95% confidence interval, 0.41–0.91) and 0.82 (0.56–1.19), respectively) and for colon cancer in female users (0.78; 0.62–0.98). Some risk reduction was seen for prostate cancer (0.87; 0.69–1.08), but breast cancer risk was close to unity (0.93; 0.74–1.17). Overall, treatment with neuroleptic medications was not related to a reduced risk of cancer, but for cancers of the rectum, colon and prostate there were suggestive decreases in risk

    Mechanism-related circulating proteins as biomarkers for clinical outcome in patients with unresectable hepatocellular carcinoma receiving sunitinib

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several proteins that promote angiogenesis are overexpressed in hepatocellular carcinoma (HCC) and have been implicated in disease pathogenesis. Sunitinib has antiangiogenic activity and is an oral multitargeted inhibitor of vascular endothelial growth factor receptors (VEGFRs)-1, -2, and -3, platelet-derived growth factor receptors (PDGFRs)-α and -β, stem-cell factor receptor (KIT), and other tyrosine kinases. In a phase II study of sunitinib in advanced HCC, we evaluated the plasma pharmacodynamics of five proteins related to the mechanism of action of sunitinib and explored potential correlations with clinical outcome.</p> <p>Methods</p> <p>Patients with advanced HCC received a starting dose of sunitinib 50 mg/day administered orally for 4 weeks on treatment, followed by 2 weeks off treatment. Plasma samples from 37 patients were obtained at baseline and during treatment and were analyzed for vascular endothelial growth factor (VEGF)-A, VEGF-C, soluble VEGFR-2 (sVEGFR-2), soluble VEGFR-3 (sVEGFR-3), and soluble KIT (sKIT).</p> <p>Results</p> <p>At the end of the first sunitinib treatment cycle, plasma VEGF-A levels were significantly increased relative to baseline, while levels of plasma VEGF-C, sVEGFR-2, sVEGFR-3, and sKIT were significantly decreased. Changes from baseline in VEGF-A, sVEGFR-2, and sVEGFR-3, but not VEGF-C or sKIT, were partially or completely reversed during the first 2-week off-treatment period. High levels of VEGF-C at baseline were significantly associated with Response Evaluation Criteria in Solid Tumors (RECIST)-defined disease control, prolonged time to tumor progression (TTP), and prolonged overall survival (OS). Baseline VEGF-C levels were an independent predictor of TTP by multivariate analysis. Changes from baseline in VEGF-A and sKIT at cycle 1 day 14 or cycle 2 day 28, and change in VEGF-C at the end of the first off-treatment period, were significantly associated with both TTP and OS, while change in sVEGFR-2 at cycle 1 day 28 was an independent predictor of OS.</p> <p>Conclusions</p> <p>Baseline plasma VEGF-C levels predicted disease control (based on RECIST) and were positively associated with both TTP and OS in this exploratory analysis, suggesting that this VEGF family member may have utility in predicting clinical outcome in patients with HCC who receive sunitinib.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00247676">NCT00247676</a></p
    corecore