74 research outputs found

    UDP-glucuronosyltransferase and sulfotransferase polymorphisms, sex hormone concentrations, and tumor receptor status in breast cancer patients

    Get PDF
    INTRODUCTION: UDP-glucuronosyltransferase (UGT) and sulfotransferase (SULT) enzymes are involved in removing sex hormones from circulation. Polymorphic variation in five UGT and SULT genes – UGT1A1 ((TA)(6)/(TA)(7)), UGT2B4 (Asp(458)Glu), UGT2B7 (His(268)Tyr), UGT2B15 (Asp(85)Tyr), and SULT1A1 (Arg(213)His) – may be associated with circulating sex hormone concentrations, or the risk of an estrogen receptor-negative (ER(-)) or progesterone receptor-negative (PR(-)) tumor. METHODS: Logistic regression analysis was used to estimate the odds ratios of an ER(- )or PR(- )tumor associated with polymorphisms in the genes listed above for 163 breast cancer patients from a population-based cohort study of women in western Washington. Adjusted geometric mean estradiol, estrone, and testosterone concentrations were calculated within each UGT and SULT genotype for a subpopulation of postmenopausal breast cancer patients not on hormone therapy 2–3 years after diagnosis (n = 89). RESULTS: The variant allele of UGT1A1 was associated with reduced risk of an ER(- )tumor (P for trend = 0.03), and variants of UGT2B15 and SULT1A1 were associated with non-statistically significant risk reductions. There was some indication that plasma estradiol and testosterone concentrations varied by UGT2B15 and SULT1A1 genotypes; women with the UGT2B15 Asp/Tyr and Tyr/Tyr genotypes had higher concentrations of estradiol than women with the Asp/Asp genotype (P = 0.004). Compared with women with the SULT1A1 Arg/Arg and Arg/His genotypes, women with the His/His genotype had elevated concentrations of testosterone (P = 0.003). CONCLUSIONS: The risk of ER(- )breast cancer tumors may vary by UGT or SULT genotype. Further, plasma estradiol and testosterone concentrations in breast cancer patients may differ depending on some UGT and SULT genotypes

    Phosphorylation of Kif26b Promotes Its Polyubiquitination and Subsequent Proteasomal Degradation during Kidney Development

    Get PDF
    Kif26b, a member of the kinesin superfamily proteins (KIFs), is essential for kidney development. Kif26b expression is restricted to the metanephric mesenchyme, and its transcription is regulated by a zinc finger transcriptional regulator Sall1. However, the mechanism(s) by which Kif26b protein is regulated remain unknown. Here, we demonstrate phosphorylation and subsequent polyubiquitination of Kif26b in the developing kidney. We find that Kif26b interacts with an E3 ubiquitin ligase, neural precursor cell expressed developmentally down-regulated protein 4 (Nedd4) in developing kidney. Phosphorylation of Kif26b at Thr-1859 and Ser-1962 by the cyclin-dependent kinases (CDKs) enhances the interaction of Kif26b with Nedd4. Nedd4 polyubiquitinates Kif26b and thereby promotes degradation of Kif26b via the ubiquitin-proteasome pathway. Furthermore, Kif26b lacks ATPase activity but does associate with microtubules. Nocodazole treatment not only disrupts the localization of Kif26b to microtubules but also promotes phosphorylation and polyubiquitination of Kif26b. These results suggest that the function of Kif26b is microtubule-based and that Kif26b degradation in the metanephric mesenchyme via the ubiquitin-proteasome pathway may be important for proper kidney development

    Androgens and the breast

    Get PDF
    Androgens have important physiological effects in women while at the same time they may be implicated in breast cancer pathologies. However, data on the effects of androgens on mammary epithelial proliferation and/or breast cancer incidence are not in full agreement. We performed a literature review evaluating current clinical, genetic and epidemiological data regarding the role of androgens in mammary growth and neoplasia. Epidemiological studies appear to have significant methodological limitations and thus provide inconclusive results. The study of molecular defects involving androgenic pathways in breast cancer is still in its infancy. Clinical and nonhuman primate studies suggest that androgens inhibit mammary epithelial proliferation and breast growth while conventional estrogen treatment suppresses endogenous androgens. Abundant clinical evidence suggests that androgens normally inhibit mammary epithelial proliferation and breast growth. Suppression of androgens using conventional estrogen treatment may thus enhance estrogenic breast stimulation and possibly breast cancer risk. Addition of testosterone to the usual hormone therapy regimen may diminish the estrogen/progestin increase in breast cancer risk but the impact of this combined use on mammary gland homeostasis still needs evaluation

    Spinal infection: state of the art and management algorithm

    Get PDF
    Spinal infection is a rare pathology although a concerning rising incidence has been observed in recent years. This increase might reflect a progressively more susceptible population but also the availability of increased diagnostic accuracy. Yet, even with improved diagnosis tools and procedures, the delay in diagnosis remains an important issue. This review aims to highlight the importance of a methodological attitude towards accurate and prompt diagnosis using an algorithm to aid on spinal infection management. METHODS: Appropriate literature on spinal infection was selected using databases from the US National Library of Medicine and the National Institutes of Health. RESULTS: Literature reveals that histopathological analysis of infected tissues is a paramount for diagnosis and must be performed routinely. Antibiotic therapy is transversal to both conservative and surgical approaches and must be initiated after etiological diagnosis. Indications for surgical treatment include neurological deficits or sepsis, spine instability and/or deformity, presence of epidural abscess and upon failure of conservative treatment. CONCLUSIONS: A methodological assessment could lead to diagnosis effectiveness of spinal infection. Towards this, we present a management algorithm based on literature findings

    The development of a web- and a print-based decision aid for prostate cancer screening

    Get PDF
    Background Whether early detection and treatment of prostate cancer (PCa) will reduce disease-related mortality remains uncertain. As a result, tools are needed to facilitate informed decision making. While there have been several decision aids (DAs) developed and tested, very few have included an exercise to help men clarify their values and preferences about PCa screening. Further, only one DA has utilized an interactive web-based format, which allows for an expansion and customization of the material. We describe the development of two DAs, a booklet and an interactive website, each with a values clarification component and designed for use in diverse settings. Methods We conducted two feasibility studies to assess men\u27s (45-70 years) Internet access and their willingness to use a web- vs. a print-based tool. The booklet was adapted from two previous versions evaluated in randomized controlled trials (RCTs) and the website was created to closely match the content of the revised booklet. Usability testing was conducted to obtain feedback regarding draft versions of the materials. The tools were also reviewed by a plain language expert and the interdisciplinary research team. Feedback on the content and presentation led to iterative modifications of the tools. Results The feasibility studies confirmed that the Internet was a viable medium, as the majority of men used a computer, had access to the Internet, and Internet use increased over time. Feedback from the usability testing on the length, presentation, and content of the materials was incorporated into the final versions of the booklet and website. Both the feasibility studies and the usability testing highlighted the need to address men\u27s informed decision making regarding screening. Conclusions Informed decision making for PCa screening is crucial at present and may be important for some time, particularly if a definitive recommendation either for or against screening does not emerge from ongoing prostate cancer screening trials. We have detailed our efforts at developing print- and web-based DAs to assist men in determining how to best meet their PCa screening preferences. Following completion of our ongoing RCT designed to test these materials, our goal will be to develop a dissemination project for the more effective tool

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    Personal Genome Project UK (PGP-UK): a research and citizen science hybrid project in support of personalized medicine

    Get PDF
    Background: Molecular analyses such as whole-genome sequencing have become routine and are expected to be transformational for future healthcare and lifestyle decisions. Population-wide implementation of such analyses is, however, not without challenges, and multiple studies are ongoing to identify what these are and explore how they can be addressed. Methods: Defined as a research project, the Personal Genome Project UK (PGP-UK) is part of the global PGP network and focuses on open data sharing and citizen science to advance and accelerate personalized genomics and medicine. Results: Here we report our findings on using an open consent recruitment protocol, active participant involvement, open access release of personal genome, methylome and transcriptome data and associated analyses, including 47 new variants predicted to affect gene function and innovative reports based on the analysis of genetic and epigenetic variants. For this pilot study, we recruited 10 participants willing to actively engage as citizen scientists with the project. In addition, we introduce Genome Donation as a novel mechanism for openly sharing previously restricted data and discuss the first three donations received. Lastly, we present GenoME, a free, open-source educational app suitable for the lay public to allow exploration of personal genomes. Conclusions: Our findings demonstrate that citizen science-based approaches like PGP-UK have an important role to play in the public awareness, acceptance and implementation of genomics and personalized medicine

    African-American health: the role of the social environment

    Full text link
    Cooper and colleagues have noted that the forces affecting the health of minority populations are the same forces, on a less intensive scale, that affect the health of the overall population. 90 That is, we can view the health of the African-American population as the visible tip of an iceberg. This tip of the iceberg is a function of the average health of the entire population. Thus, an effective strategy must address not only the tip, but also should attack the entire iceberg and reduce the risk that it is creating throughout the population. Similarly, Wallace and Wallace have shown how the mechanisms of hierarchical diffusion, spatial contagion, and network diffusion lead to the spread of health and social problems initially confined in inner cities to suburban areas and smaller cities. 91 That is, because of the economic links typing various communities together, there are mechanisms that will ensure the diffusion of disease and disorder from one area to another. If unaddressed, the problems of stigmatized and marginalized urban populations will have adverse impacts on the health, well-being, and quality of life of the more affluent. Thus, investments that will improve the social conditions of a marginalized population can have long-term positive health and social consequences for the entire society.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45781/1/11524_2006_Article_BF02345099.pd

    Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020-December 2021

    Get PDF
    This paper uses a robust method of spatial epidemiological analysis to assess the spatial growth rate of multiple lineages of SARS-CoV-2 in the local authority areas of England, September 2020–December 2021. Using the genomic surveillance records of the COVID-19 Genomics UK (COG-UK) Consortium, the analysis identifies a substantial (7.6-fold) difference in the average rate of spatial growth of 37 sample lineages, from the slowest (Delta AY.4.3) to the fastest (Omicron BA.1). Spatial growth of the Omicron (B.1.1.529 and BA) variant was found to be 2.81× faster than the Delta (B.1.617.2 and AY) variant and 3.76× faster than the Alpha (B.1.1.7 and Q) variant. In addition to AY.4.2 (a designated variant under investigation, VUI-21OCT-01), three Delta sublineages (AY.43, AY.98 and AY.120) were found to display a statistically faster rate of spatial growth than the parent lineage and would seem to merit further investigation. We suggest that the monitoring of spatial growth rates is a potentially valuable adjunct to outbreak response procedures for emerging SARS-CoV-2 variants in a defined population
    • 

    corecore