1,071 research outputs found

    Restrictions of generalized Verma modules to symmetric pairs

    Full text link
    We initiate a new line of investigation on branching problems for generalized Verma modules with respect to complex reductive symmetric pairs (g,k). Here we note that Verma modules of g may not contain any simple module when restricted to a reductive subalgebra k in general. In this article, using the geometry of K_C orbits on the generalized flag variety G_C/P_C, we give a necessary and sufficient condition on the triple (g,k, p) such that the restriction X|_k always contains simple k-modules for any g-module XX lying in the parabolic BGG category O^p attached to a parabolic subalgebra p of g. Formulas are derived for the Gelfand-Kirillov dimension of any simple k-module occurring in a simple generalized Verma module of g. We then prove that the restriction X|_k is multiplicity-free for any generic g-module X \in O if and only if (g,k) is isomorphic to a direct sum of (A_n,A_{n-1}), (B_n,D_n), or (D_{n+1},B_n). We also see that the restriction X|_k is multiplicity-free for any symmetric pair (g, k) and any parabolic subalgebra p with abelian nilradical and for any generic g-module X \in O^p. Explicit branching laws are also presented.Comment: 31 pages, To appear in Transformation Group

    Effects of interactions between anthropogenic stressors and recurring perturbations on ecosystem resilience and collapse

    Full text link
    Insights into declines in ecosystem resilience and their causes and effects can inform preemptive action to avoid ecosystem collapse and loss of biodiversity, ecosystem services, and human well-being. Empirical studies of ecosystem collapse are rare and hampered by ecosystem complexity, nonlinear and lagged responses, and interactions across scales. We investigated how an anthropogenic stressor could diminish ecosystem resilience to a recurring perturbation by altering a critical ecosystem driver. We studied groundwater-dependent, peat-accumulating, fire-prone wetlands known as upland swamps in southeastern Australia. We hypothesized that underground mining (stressor) reduces resilience of these wetlands to landscape fires (perturbation) by diminishing groundwater, a key ecosystem driver. We monitored soil moisture as an indicator of ecosystem resilience during and after underground mining. After landscape fire, we compared responses of multiple state variables representing ecosystem structure, composition, and function in swamps within the mining footprint with unmined reference swamps. Soil moisture declined without recovery in swamps with mine subsidence (i.e., undermined), but was maintained in reference swamps over 8 years (effect size 1.8). Relative to burned reference swamps, burned undermined swamps showed greater loss of peat via substrate combustion; reduced cover, height, and biomass of regenerating vegetation; reduced postfire plant species richness and abundance; altered plant species composition; increased mortality rates of woody plants; reduced postfire seedling recruitment; and extirpation of a hydrophilic animal. Undermined swamps therefore showed strong symptoms of postfire ecosystem collapse, whereas reference swamps regenerated vigorously. We found that an anthropogenic stressor diminished the resilience of an ecosystem to recurring perturbations, predisposing it to collapse. Avoidance of ecosystem collapse hinges on early diagnosis of mechanisms and preventative risk reduction. It may be possible to delay or ameliorate symptoms of collapse or to restore resilience, but the latter appears unlikely in our study system due to fundamental alteration of a critical ecosystem driver. Efectos de las interacciones entre los estresantes antropogénicos y las perturbaciones recurrentes sobre la resiliencia y el colapso de los ecosistemas

    Comparison of Countermovement Jump and Squat Jump Performance Between 627 State and Non-State Representative Junior Australian Football Players

    Get PDF
    This cross-sectional study investigated differences in lower-body power of state and nonstate representative junior Australian football (AF) players through countermovement jump (CMJ) and squat jump (SJ) performance. A total of 627 players performed the CMJ and SJ at the end of the preseason phase over a 2-week period, with each player grouped according to their age (under 18 [U18] or under 16 [U16]), and highest competition level played (state representation and nonstate representation). One-way multivariate analysis of variance (MANOVA), follow up ANOVA's, and Cohen's d effect sizes were used to identify significant main effects and between-group differences. Statistical significance was set at α < 0.05. Significant small-to-moderate effect size differences were observed between competition level, with state U18 and U16 players recording greater CMJ and SJ height, and peak power (PP), compared with their nonstate representative peers, respectively. Similarly, significant small-to-moderate effect size differences existed between age groups, with nonstate U18 players recording greater CMJ and SJ height and PP than nonstate U16 counterparts. However, state U18 and state U16 only differed in CMJ PP. No differences were found between competition level or age groups for the difference between CMJ and SJ jump height (CMJSJ diff ). Together, these findings suggest that state and nonstate representative junior AFs may have a similar ability to use the stretch-shortening cycle, despite state representative players jumping higher in the CMJ and SJ

    Childhood Incident Asthma and Traffic-Related Air Pollution at Home and School

    Get PDF
    Background: Traffic-related air pollution has been associated with adverse cardiorespiratory effects, including increased asthma prevalence. However, there has been little study of effects of traffic exposure at school on new-onset asthma. Objectives: We evaluated the relationship of new-onset asthma with traffic-related pollution near homes and schools. Methods: Parent-reported physician diagnosis of new-onset asthma (n = 120) was identified during 3 years of follow-up of a cohort of 2,497 kindergarten and first-grade children who were asthma- and wheezing-free at study entry into the Southern California Children's Health Study. We assessed traffic-related pollution exposure based on a line source dispersion model of traffic volume, distance from home and school, and local meteorology. Regional ambient ozone, nitrogen dioxide (NO2), and particulate matter were measured continuously at one central site monitor in each of 13 study communities. Hazard ratios (HRs) for new-onset asthma were scaled to the range of ambient central site pollutants and to the residential interquartile range for each traffic exposure metric. Results: Asthma risk increased with modeled traffic-related pollution exposure from roadways near homes [HR 1.51; 95% confidence interval (CI), 1.25-1.82] and near schools (HR 1.45; 95% CI, 1.06-1.98). Ambient NO2 measured at a central site in each community was also associated with increased risk (HR 2.18; 95% CI, 1.18-4.01). In models with both NO2 and modeled traffic exposures, there were independent associations of asthma with traffic-related pollution at school and home, whereas the estimate for NO2 was attenuated (HR 1.37; 95% CI, 0.69-2.71). Conclusions: Traffic-related pollution exposure at school and homes may both contribute to the development of asthma. Editor's SummaryTraffic-related air pollution has been associated with adverse cardiorespiratory effects, including increased asthma prevalence. McConnell et al. (p. 1021) evaluated the relationship of new-onset asthma with traffic-related pollution near homes and schools. Parent-reported physician diagnosis of new-onset asthma was identified during 3 years of follow-up of a cohort of kindergarten and first-grade children who were asthma- and wheezing-free at study entry into the Southern California Children's Health Study. Traffic-related pollution exposure was assessed based on a line source dispersion model of traffic volume, distance from home and school, and local meteorology. Regional ambient ozone, nitrogen dioxide (NO2), and particulate matter were measured continuously at one central site monitor in each of 13 study communities. The authors report an increase in asthma risk with modeled traffic-related pollution exposure from roadways near homes and schools. Ambient NO2 was also associated with increased risk. Models that included both NO2 and modeled traffic exposures suggested independent associations of asthma with traffic-related pollution at school and at home, whereas the estimate for NO2 was attenuated. The authors conclude that traffic-related pollution exposure at school and home may both contribute to the development of asthma

    Species-specific differences in the Pro-Ala rich region of cardiac myosin binding protein-C

    Get PDF
    Cardiac myosin binding protein-C (cMyBP-C) is an accessory protein found in the A-bands of vertebrate sarcomeres and mutations in the cMyBP-C gene are a leading cause of familial hypertrophic cardiomyopathy. The regulatory functions of cMyBP-C have been attributed to the N-terminus of the protein, which is composed of tandem immunoglobulin (Ig)-like domains (C0, C1, and C2), a region rich in proline and alanine residues (the Pro-Ala rich region) that links C0 and C1, and a unique sequence referred to as the MyBP-C motif, or M-domain, that links C1 and C2. Recombinant proteins that contain various combinations of the N-terminal domains of cMyBP-C can activate actomyosin interactions in the absence of Ca2+, but the specific sequences required for these effects differ between species; the Pro-Ala region has been implicated in human cMyBP-C whereas the C1 and M-domains appear important in mouse cMyBP-C. To investigate whether species-specific differences in sequence can account for the observed differences in function, we compared sequences of the Pro-Ala rich region in cMyBP-C isoforms from different species. Here we report that the number of proline and alanine residues in the Pro-Ala rich region varies significantly between different species and that the number correlates directly with mammalian body size and inversely with heart rate. Thus, systematic sequence differences in the Pro-Ala rich region of cMyBP-C may contribute to observed functional differences in human versus mouse cMyBP-C isoforms and suggest that the Pro-Ala region may be important in matching contractile speed to cardiac function across species

    An observational efficacy and safety analysis of the treatment of acute invasive aspergillosis using voriconazole

    Get PDF
    The purpose of this study was to evaluate efficacy and safety of voriconazole in patients with acute invasive aspergillosis (IA) in a real-life, clinical setting. This was a multicenter observational study in adult patients treated with voriconazole for invasive mycosis. The study evaluated clinical response, mortality, use of other licensed antifungal therapy (OLAT), and treatment duration. This sub-analysis evaluated treatment and outcome data specifically from adult patients with proven/probable IA, while safety data were assessed in patients with proven/probable/possible IA. Of the 141 patients enrolled, 113 were adults with proven/probable IA and six had possible IA. Voriconazole treatment duration ranged from 1 to 183 days (median, 49.5 days). Voriconazole was used exclusively in 64% (72/113) of patients and in combination/sequentially with OLAT in 36%. Overall successful treatment response was 50% (57/113 patients). Twelve percent (14/113) of patients were switched to OLAT, either because of insufficient response (four patients) or for safety reasons (10 patients). Overall and attributable (entirely or partially due to fungal infection) mortality rates were 52% (59/113) and 17%, respectively. Treatment-related adverse events were reported for 18% (22/119) of patients. This observational study confirms the results of previous clinical trials demonstrating voriconazole as an effective and safe agent for treatment of confirmed acute IA

    Discovery of mating in the major African livestock pathogen Trypanosoma congolense

    Get PDF
    The protozoan parasite, Trypanosoma congolense, is one of the most economically important pathogens of livestock in Africa and, through its impact on cattle health and productivity, has a significant effect on human health and well being. Despite the importance of this parasite our knowledge of some of the fundamental biological processes is limited. For example, it is unknown whether mating takes place. In this paper we have taken a population genetics based approach to address this question. The availability of genome sequence of the parasite allowed us to identify polymorphic microsatellite markers, which were used to genotype T. congolense isolates from livestock in a discrete geographical area of The Gambia. The data showed a high level of diversity with a large number of distinct genotypes, but a deficit in heterozygotes. Further analysis identified cryptic genetic subdivision into four sub-populations. In one of these, parasite genotypic diversity could only be explained by the occurrence of frequent mating in T. congolense. These data are completely inconsistent with previous suggestions that the parasite expands asexually in the absence of mating. The discovery of mating in this species of trypanosome has significant consequences for the spread of critical traits, such as drug resistance, as well as for fundamental aspects of the biology and epidemiology of this neglected but economically important pathogen

    Phylogenetic Codivergence Supports Coevolution of Mimetic Heliconius Butterflies

    Get PDF
    The unpalatable and warning-patterned butterflies _Heliconius erato_ and _Heliconius melpomene_ provide the best studied example of mutualistic M&#xfc;llerian mimicry, thought &#x2013; but rarely demonstrated &#x2013; to promote coevolution. Some of the strongest available evidence for coevolution comes from phylogenetic codivergence, the parallel divergence of ecologically associated lineages. Early evolutionary reconstructions suggested codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and this was initially hailed as the most striking known case of coevolution. However, subsequent molecular phylogenetic analyses found discrepancies in phylogenetic branching patterns and timing (topological and temporal incongruence) that argued against codivergence. We present the first explicit cophylogenetic test of codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and re-examine the timing of these radiations. We find statistically significant topological congruence between multilocus coalescent population phylogenies of _H. erato_ and _H. melpomene_, supporting repeated codivergence of mimetic populations. Divergence time estimates, based on a Bayesian coalescent model, suggest that the evolutionary radiations of _H. erato_ and _H. melpomene_ occurred over the same time period, and are compatible with a series of temporally congruent codivergence events. This evidence supports a history of reciprocal coevolution between M&#xfc;llerian co-mimics characterised by phylogenetic codivergence and parallel phenotypic change

    Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis

    Get PDF
    Rates of extinction vary greatly through geological time, with losses particularly concentrated in mass extinctions. Species duration at other times varies greatly, but the reasons for this are unclear. Geographical range correlates with lineage duration amongst marine invertebrates, but it is less clear how far this generality extends to other groups in other habitats. It is also unclear whether a wide geographical distribution makes groups more likely to survive mass extinctions. Here we test for extinction selectivity amongst terrestrial vertebrates across the end-Triassic event. We demonstrate that terrestrial vertebrate clades with larger geographical ranges were more resilient to extinction than those with smaller ranges throughout the Triassic and Jurassic. However, this relationship weakened with increasing proximity to the end-Triassic mass extinction, breaking down altogether across the event itself. We demonstrate that these findings are not a function of sampling biases; a perennial issue in studies of this kind

    Plasmodium vivax lineages: geographical distribution, tandem repeat polymorphism, and phylogenetic relationship

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multi-drug resistance and severe/complicated cases are the emerging phenotypes of vivax malaria, which may deteriorate current anti-malarial control measures. The emergence of these phenotypes could be associated with either of the two <it>Plasmodium vivax </it>lineages. The two lineages had been categorized as Old World and New World, based on geographical sub-division and genetic and phenotypical markers. This study revisited the lineage hypothesis of <it>P. vivax </it>by typing the distribution of lineages among global isolates and evaluated their genetic relatedness using a panel of new mini-satellite markers.</p> <p>Methods</p> <p><it>18S SSU rRNA S-type </it>gene was amplified from 420 <it>Plasmodium vivax </it>field isolates collected from different geographical regions of India, Thailand and Colombia as well as four strains each of <it>P. vivax </it>originating from Nicaragua, Panama, Thailand (Pak Chang), and Vietnam (ONG). A mini-satellite marker panel was then developed to understand the population genetic parameters and tested on a sample subset of both lineages.</p> <p>Results</p> <p><it>18S SSU rRNA S-type </it>gene typing revealed the distribution of both lineages (Old World and New World) in all geographical regions. However, distribution of <it>Plasmodium vivax </it>lineages was highly variable in every geographical region. The lack of geographical sub-division between lineages suggests that both lineages are globally distributed. Ten mini-satellites were scanned from the <it>P. vivax </it>genome sequence; these tandem repeats were located in eight of the chromosomes. Mini-satellites revealed substantial allelic diversity (7-21, <it>AE </it>= 14.6 ± 2.0) and heterozygosity (<it>He </it>= 0.697-0.924, <it>AE </it>= 0.857 ± 0.033) per locus. Mini-satellite comparison between the two lineages revealed high but similar pattern of genetic diversity, allele frequency, and high degree of allele sharing. A Neighbour-Joining phylogenetic tree derived from genetic distance data obtained from ten mini-satellites also placed both lineages together in every cluster.</p> <p>Conclusions</p> <p>The global lineage distribution, lack of genetic distance, similar pattern of genetic diversity, and allele sharing strongly suggested that both lineages are a single species and thus new emerging phenotypes associated with vivax malaria could not be clearly classified as belonging to a particular lineage on basis of their geographical origin.</p
    corecore