4,168 research outputs found
Nucleon-Nucleon Interaction: A Typical/Concise Review
Nearly a recent century of work is divided to Nucleon-Nucleon (NN)
interaction issue. We review some overall perspectives of NN interaction with a
brief discussion about deuteron, general structure and symmetries of NN
Lagrangian as well as equations of motion and solutions. Meanwhile, the main NN
interaction models, as frameworks to build NN potentials, are reviewed
concisely. We try to include and study almost all well-known potentials in a
similar way, discuss more on various commonly used plain forms for two-nucleon
interaction with an emphasis on the phenomenological and meson-exchange
potentials as well as the constituent-quark potentials and new ones based on
chiral effective field theory and working in coordinate-space mostly. The
potentials are constructed in a way that fit NN scattering data, phase shifts,
and are also compared in this way usually. An extra goal of this study is to
start comparing various potentials forms in a unified manner. So, we also
comment on the advantages and disadvantages of the models and potentials partly
with reference to some relevant works and probable future studies.Comment: 85 pages, 5 figures, than the previous v3 edition, minor changes, and
typos fixe
The Flavor Asymmetry of the Light Quark Sea from Semi-inclusive Deep-inelastic Scattering
The flavor asymmetry of the light quark sea of the nucleon is determined in
the kinematic range 0.02<x<0.3 and 1 GeV^2<Q^2<10 GeV^2, for the first time
from semi-inclusive deep-inelastic scattering. The quantity
(dbar(x)-ubar(x))/(u(x)-d(x)) is derived from a relationship between the yields
of positive and negative pions from unpolarized hydrogen and deuterium targets.
The flavor asymmetry dbar-ubar is found to be non-zero and x dependent, showing
an excess of dbar over ubar quarks in the proton.Comment: 7 Pages, 2 figures, RevTeX format; slight revision in text, small
change in extraction of dbar-ubar and comparison with a high q2
parameterizatio
Fermi Gamma-ray Imaging of a Radio Galaxy
The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating
from the giant radio lobes of the radio galaxy Centaurus A. The resolved
gamma-ray image shows the lobes clearly separated from the central active
source. In contrast to all other active galaxies detected so far in high-energy
gamma-rays, the lobe flux constitutes a considerable portion (>1/2) of the
total source emission. The gamma-ray emission from the lobes is interpreted as
inverse Compton scattered relic radiation from the cosmic microwave background
(CMB), with additional contribution at higher energies from the
infrared-to-optical extragalactic background light (EBL). These measurements
provide gamma-ray constraints on the magnetic field and particle energy content
in radio galaxy lobes, and a promising method to probe the cosmic relic photon
fields.Comment: 27 pages, includes Supplementary Online Material; corresponding
authors: C.C. Cheung, Y. Fukazawa, J. Knodlseder, L. Stawar
Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi
We report the detection of high-energy gamma-ray emission from two starburst
galaxies using data obtained with the Large Area Telescope on board the Fermi
Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been
detected at significance levels of 6.8 sigma and 4.8 sigma respectively, from
sources positionally coincident with locations of the starburst galaxies M82
and NGC 253. The total fluxes of the sources are consistent with gamma-ray
emission originating from the interaction of cosmic rays with local
interstellar gas and radiation fields and constitute evidence for a link
between massive star formation and gamma-ray emission in star-forming galaxies.Comment: Submitted to ApJ Letter
Nucleon-Nucleon Optical Model for Energies to 3 GeV
Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those
derived by quantum inversion, which describe the NN interaction for T-lab below
300$ MeV are extended in their range of application as NN optical models.
Extensions are made in r-space using complex separable potentials definable
with a wide range of form factor options including those of boundary condition
models. We use the latest phase shift analyses SP00 (FA00, WI00) of Arndt et
al. from 300 MeV to 3 GeV to determine these extensions. The imaginary parts of
the optical model interactions account for loss of flux into direct or resonant
production processes. The optical potential approach is of particular value as
it permits one to visualize fusion, and subsequent fission, of nucleons when
T-lab above 2 GeV. We do so by calculating the scattering wave functions to
specify the energy and radial dependences of flux losses and of probability
distributions. Furthermore, half-off the energy shell t-matrices are presented
as they are readily deduced with this approach. Such t-matrices are required
for studies of few- and many-body nuclear reactions.Comment: Latex, 40 postscript pages including 17 figure
Observation of a Single-Spin Azimuthal Asymmetry in Semi-Inclusive Pion Electro-Production
Single-spin asymmetries for semi-inclusive pion production in deep-inelastic
scattering have been measured for the first time. A significant target-spin
asymmetry of the distribution in the azimuthal angle phi of the pion relative
to the lepton scattering plane was observed for pi+ electro-production on a
longitudinally polarized hydrogen target. The corresponding analyzing power in
the sin(phi) moment of the cross section is 0.022 +/- 0.005 +/- 0.003. This
result can be interpreted as the effect of terms in the cross section involving
chiral-odd spin distribution functions in combination with a time-reversal-odd
fragmentation function that is sensitive to the transverse polarization of the
fragmenting quark.Comment: 5 pages of RevTex, 3 ps figures, 2 table
- …
