3,098 research outputs found
Nucleon-Nucleon Interaction: A Typical/Concise Review
Nearly a recent century of work is divided to Nucleon-Nucleon (NN)
interaction issue. We review some overall perspectives of NN interaction with a
brief discussion about deuteron, general structure and symmetries of NN
Lagrangian as well as equations of motion and solutions. Meanwhile, the main NN
interaction models, as frameworks to build NN potentials, are reviewed
concisely. We try to include and study almost all well-known potentials in a
similar way, discuss more on various commonly used plain forms for two-nucleon
interaction with an emphasis on the phenomenological and meson-exchange
potentials as well as the constituent-quark potentials and new ones based on
chiral effective field theory and working in coordinate-space mostly. The
potentials are constructed in a way that fit NN scattering data, phase shifts,
and are also compared in this way usually. An extra goal of this study is to
start comparing various potentials forms in a unified manner. So, we also
comment on the advantages and disadvantages of the models and potentials partly
with reference to some relevant works and probable future studies.Comment: 85 pages, 5 figures, than the previous v3 edition, minor changes, and
typos fixe
Nucleon-Nucleon Optical Model for Energies to 3 GeV
Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those
derived by quantum inversion, which describe the NN interaction for T-lab below
300$ MeV are extended in their range of application as NN optical models.
Extensions are made in r-space using complex separable potentials definable
with a wide range of form factor options including those of boundary condition
models. We use the latest phase shift analyses SP00 (FA00, WI00) of Arndt et
al. from 300 MeV to 3 GeV to determine these extensions. The imaginary parts of
the optical model interactions account for loss of flux into direct or resonant
production processes. The optical potential approach is of particular value as
it permits one to visualize fusion, and subsequent fission, of nucleons when
T-lab above 2 GeV. We do so by calculating the scattering wave functions to
specify the energy and radial dependences of flux losses and of probability
distributions. Furthermore, half-off the energy shell t-matrices are presented
as they are readily deduced with this approach. Such t-matrices are required
for studies of few- and many-body nuclear reactions.Comment: Latex, 40 postscript pages including 17 figure
A DNA Barcode Library for North American Ephemeroptera: Progress and Prospects
DNA barcoding of aquatic macroinvertebrates holds much promise as a tool for taxonomic research and for providing the reliable identifications needed for water quality assessment programs. A prerequisite for identification using barcodes is a reliable reference library. We gathered 4165 sequences from the barcode region of the mitochondrial cytochrome c oxidase subunit I gene representing 264 nominal and 90 provisional species of mayflies (Insecta: Ephemeroptera) from Canada, Mexico, and the United States. No species shared barcode sequences and all can be identified with barcodes with the possible exception of some Caenis. Minimum interspecific distances ranged from 0.3–24.7% (mean: 12.5%), while the average intraspecific divergence was 1.97%. The latter value was inflated by the presence of very high divergences in some taxa. In fact, nearly 20% of the species included two or three haplotype clusters showing greater than 5.0% sequence divergence and some values are as high as 26.7%. Many of the species with high divergences are polyphyletic and likely represent species complexes. Indeed, many of these polyphyletic species have numerous synonyms and individuals in some barcode clusters show morphological attributes characteristic of the synonymized species. In light of our findings, it is imperative that type or topotype specimens be sequenced to correctly associate barcode clusters with morphological species concepts and to determine the status of currently synonymized species
Beam-Induced Nuclear Depolarisation in a Gaseous Polarised Hydrogen Target
Spin-polarised atomic hydrogen is used as a gaseous polarised proton target
in high energy and nuclear physics experiments operating with internal beams in
storage rings. When such beams are intense and bunched, this type of target can
be depolarised by a resonant interaction with the transient magnetic field
generated by the beam bunches. This effect has been studied with the HERA
positron beam in the HERMES experiment at DESY. Resonances have been observed
and a simple analytic model has been used to explain their shape and position.
Operating conditions for the experiment have been found where there is no
significant target depolarisation due to this effect.Comment: REVTEX, 6 pages, 5 figure
Measurement of the Neutron Spin Structure Function with a Polarized ^3He Target
Results are reported from the HERMES experiment at HERA on a measurement of
the neutron spin structure function in deep inelastic scattering
using 27.5 GeV longitudinally polarized positrons incident on a polarized
He internal gas target. The data cover the kinematic range
and . The integral evaluated at a fixed of is . Assuming Regge behavior at low , the first
moment is .Comment: 4 pages TEX, text available at
http://www.krl.caltech.edu/preprints/OAP.htm
The Flavor Asymmetry of the Light Quark Sea from Semi-inclusive Deep-inelastic Scattering
The flavor asymmetry of the light quark sea of the nucleon is determined in
the kinematic range 0.02<x<0.3 and 1 GeV^2<Q^2<10 GeV^2, for the first time
from semi-inclusive deep-inelastic scattering. The quantity
(dbar(x)-ubar(x))/(u(x)-d(x)) is derived from a relationship between the yields
of positive and negative pions from unpolarized hydrogen and deuterium targets.
The flavor asymmetry dbar-ubar is found to be non-zero and x dependent, showing
an excess of dbar over ubar quarks in the proton.Comment: 7 Pages, 2 figures, RevTeX format; slight revision in text, small
change in extraction of dbar-ubar and comparison with a high q2
parameterizatio
Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi
We report the detection of high-energy gamma-ray emission from two starburst
galaxies using data obtained with the Large Area Telescope on board the Fermi
Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been
detected at significance levels of 6.8 sigma and 4.8 sigma respectively, from
sources positionally coincident with locations of the starburst galaxies M82
and NGC 253. The total fluxes of the sources are consistent with gamma-ray
emission originating from the interaction of cosmic rays with local
interstellar gas and radiation fields and constitute evidence for a link
between massive star formation and gamma-ray emission in star-forming galaxies.Comment: Submitted to ApJ Letter
Fermi Gamma-ray Imaging of a Radio Galaxy
The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating
from the giant radio lobes of the radio galaxy Centaurus A. The resolved
gamma-ray image shows the lobes clearly separated from the central active
source. In contrast to all other active galaxies detected so far in high-energy
gamma-rays, the lobe flux constitutes a considerable portion (>1/2) of the
total source emission. The gamma-ray emission from the lobes is interpreted as
inverse Compton scattered relic radiation from the cosmic microwave background
(CMB), with additional contribution at higher energies from the
infrared-to-optical extragalactic background light (EBL). These measurements
provide gamma-ray constraints on the magnetic field and particle energy content
in radio galaxy lobes, and a promising method to probe the cosmic relic photon
fields.Comment: 27 pages, includes Supplementary Online Material; corresponding
authors: C.C. Cheung, Y. Fukazawa, J. Knodlseder, L. Stawar
Measurement of the Proton Spin Structure Function g1p with a Pure Hydrogen Target
A measurement of the proton spin structure function g1p(x,Q^2) in
deep-inelastic scattering is presented. The data were taken with the 27.6 GeV
longitudinally polarised positron beam at HERA incident on a longitudinally
polarised pure hydrogen gas target internal to the storage ring. The kinematic
range is 0.021<x<0.85 and 0.8 GeV^2<Q^2<20 GeV^2. The integral
Int_{0.021}^{0.85} g1p(x)dx evaluated at Q0^2 of 2.5 GeV^2 is
0.122+/-0.003(stat.)+/-0.010(syst.).Comment: 7 pages, 3 figures, 1 table, RevTeX late
Fermi Large Area Telescope observations of PSR J1836+5925
The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly
unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments
of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic
plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8
million years, a spindown luminosity of 1.1 erg s, and a
large off-peak emission component, making it quite unusual among the known
gamma-ray pulsar population. We present an analysis of one year of LAT data,
including an updated timing solution, detailed spectral results and a long-term
light curve showing no indication of variability. No evidence for a surrounding
pulsar wind nebula is seen and the spectral characteristics of the off-peak
emission indicate it is likely magnetospheric. Analysis of recent XMM
observations of the X-ray counterpart yields a detailed characterization of its
spectrum, which, like Geminga, is consistent with that of a neutron star
showing evidence for both magnetospheric and thermal emission.Comment: Accepted to Astrophysical Journa
- …