2,493 research outputs found

    Making big steps in trajectories

    Full text link
    We consider the solution of initial value problems within the context of hybrid systems and emphasise the use of high precision approximations (in software for exact real arithmetic). We propose a novel algorithm for the computation of trajectories up to the area where discontinuous jumps appear, applicable for holomorphic flow functions. Examples with a prototypical implementation illustrate that the algorithm might provide results with higher precision than well-known ODE solvers at a similar computation time

    Effects of Initial Flow on Close-In Planet Atmospheric Circulation

    Full text link
    We use a general circulation model to study the three-dimensional (3-D) flow and temperature distributions of atmospheres on tidally synchronized extrasolar planets. In this work, we focus on the sensitivity of the evolution to the initial flow state, which has not received much attention in 3-D modeling studies. We find that different initial states lead to markedly different distributions-even under the application of strong forcing (large day-night temperature difference with a short "thermal drag time") that may be representative of close-in planets. This is in contrast with the results or assumptions of many published studies. In general, coherent jets and vortices (and their associated temperature distributions) characterize the flow, and they evolve differently in time, depending on the initial condition. If the coherent structures reach a quasi- stationary state, their spatial locations still vary. The result underlines the fact that circulation models are currently unsuitable for making quantitative predictions (e.g., location and size of a "hot spot") without better constrained, and well posed, initial conditions.Comment: Accepted for publication in the Astrophysical Journal; 23 pages, 9 figures

    Solution of the off-forward leading logarithmic evolution equation based on the Gegenbauer moments inversion

    Full text link
    Using the conformal invariance the leading-log evolution of the off-forward structure function is reduced to the forward evolution described by the conventional DGLAP equation. The method relies on the fact that the anomalous dimensions of the Gegenbauer moments of the off-forward distribution are independent on the asymmetry, or skewedness, parameter and equal to the DGLAP ones. The integral kernels relating the forward and off-forward functions with the same Mellin and Gegenbauer moments are presented for arbitrary asymmetry value.Comment: 11 pages, LaTeX, no figures, revised version, references adde

    Combinatorial Synthesis of Structurally Diverse Triazole-Bridged Flavonoid Dimers and Trimers

    Get PDF
    Flavonoids are a large family of compounds associated with a broad range of biologically useful properties. In recent years, synthetic compounds that contain two flavonoid units linked together have attracted attention in drug discovery and development projects. Numerous flavonoid dimer systems, incorporating a range of monomers attached via different linkers, have been reported to exhibit interesting bioactivities. From a medicinal chemistry perspective, the 1,2,3-triazole ring system has been identified as a particularly attractive linker moiety in dimeric derivatives (owing to several favourable attributes including proven biological relevance and metabolic stability) and triazole-bridged flavonoid dimers possessing anticancer and antimalarial activities have recently been reported. However, there are relatively few examples of libraries of triazole-bridged flavonoid dimers and the diversity of flavonoid subunits present within these is typically limited. Thus, this compound type arguably remains underexplored within drug discovery. Herein, we report a modular strategy for the synthesis of novel and biologically interesting triazole-bridged flavonoid heterodimers and also very rare heterotrimers from readily available starting materials. Application of this strategy has enabled step-efficient and systematic access to a library of structurally diverse compounds of this sort, with a variety of monomer units belonging to six different structural subclasses of flavonoid successfully incorporated.Cambridge Commonwealth Trust, European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement No. [279337/DOS], AstraZeneca, European Union, Engineering and Physical Sciences Research Council, Biotechnology and Biological Sciences Research Council, Medical Research Council, Wellcome Trus

    The ηgg\eta^\prime g^* g^* vertex with arbitrary gluon virtualities in the perturbative QCD hard scattering approach

    Full text link
    We study the ηgg\eta^\prime g^* g^* vertex for arbitrary gluon virtualities in the time-like and space-like regions, using the perturbative QCD hard scattering approach and an input wave-function of the η\eta^\prime-meson consistent with the measured ηγγ\eta^\prime \gamma^* \gamma transition form factor. The contribution of the gluonic content of the η\eta^\prime-meson is taken into account, enhancing the form factor over the entire virtuality considered. However, data on the electromagnetic transition form factor of the η\eta^\prime-meson is not sufficient to quantify the gluonic enhancement. We also study the effect of the transverse momenta of the partons in the η\eta^\prime-meson on the ηgg\eta^\prime g^* g^* vertex, using the modified hard scattering approach based on Sudakov formalism. Analytic expressions for the ηgg\eta^\prime g^* g^* vertex are presented in limiting kinematic regions and parametrizations are given satisfying the QCD anomaly, for real gluons, and perturbative QCD behavior for large gluon virtualities, in both the time-like and space-like regions. Our results have implications for the inclusive decay BηXB \to \eta^\prime X and exclusive decays, such as Bη(K,K)B \to \eta^\prime (K,K^*), and in hadronic production processes N+N(Nˉ)ηXN + N (\bar N) \to \eta^\prime X.Comment: 23 pages, 19 figures (requires revtex4, amssymb, epsf); several typos corrected, this version now identical to the one accepted for publication in Phys. Rev.

    Cervical dysplasia in patients with systemic lupus erythematosus

    Get PDF
    published_or_final_versio

    Velocity Tails for Inelastic Maxwell Models

    Full text link
    We study the velocity distribution function for inelastic Maxwell models, characterized by a Boltzmann equation with constant collision rate, independent of the energy of the colliding particles. By means of a nonlinear analysis of the Boltzmann equation, we find that the velocity distribution function decays algebraically for large velocities, with exponents that are analytically calculated.Comment: 4 pages, 2 figure

    Claudins in intestines

    Get PDF
    Intestines are organs that not only digest food and absorb nutrients, but also provide a defense barrier against pathogens and noxious agents ingested. Tight junctions (TJs) are the most apical component of the junctional complex, providing one form of cell-cell adhesion in enterocytes and playing a critical role in regulating paracellular barrier permeability. Alteration of TJs leads to a number of pathophysiological diseases causing malabsorption of nutrition and intestinal structure disruption, which may even contribute to systemic organ failure. Claudins are the major structural and functional components of TJs with at least 24 members in mammals. Claudins have distinct charge-selectivity, either by tightening the paracellular pathway or functioning as paracellular channels, regulating ions and small molecules passing through the paracellular pathway. In this review, we have discussed the functions of claudin family members, their distribution and localization in the intestinal tract of mammals, their alterations in intestine-related diseases and chemicals/agents that regulate the expression and localization of claudins as well as the intestinal permeability, which provide a therapeutic view for treating intestinal diseases

    Generalized parton distributions from nucleon form factor data

    Full text link
    We present a simple empirical parameterization of the x- and t-dependence of generalized parton distributions at zero skewness, using forward parton distributions as input. A fit to experimental data for the Dirac, Pauli and axial form factors of the nucleon allows us to discuss quantitatively the interplay between longitudinal and transverse partonic degrees of freedom in the nucleon ("nucleon tomography"). In particular we obtain the transverse distribution of valence quarks at given momentum fraction x. We calculate various moments of the distributions, including the form factors that appear in the handbag approximation to wide-angle Compton scattering. This allows us to estimate the minimal momentum transfer required for reliable predictions in that approach to be around |t|~3 GeV^2. We also evaluate the valence contributions to the energy-momentum form factors entering Ji's sum rule.Comment: 69 pages, 36 figures. v2: small improvements in text and figures; references adde
    corecore