We use a general circulation model to study the three-dimensional (3-D) flow
and temperature distributions of atmospheres on tidally synchronized extrasolar
planets. In this work, we focus on the sensitivity of the evolution to the
initial flow state, which has not received much attention in 3-D modeling
studies. We find that different initial states lead to markedly different
distributions-even under the application of strong forcing (large day-night
temperature difference with a short "thermal drag time") that may be
representative of close-in planets. This is in contrast with the results or
assumptions of many published studies. In general, coherent jets and vortices
(and their associated temperature distributions) characterize the flow, and
they evolve differently in time, depending on the initial condition. If the
coherent structures reach a quasi- stationary state, their spatial locations
still vary. The result underlines the fact that circulation models are
currently unsuitable for making quantitative predictions (e.g., location and
size of a "hot spot") without better constrained, and well posed, initial
conditions.Comment: Accepted for publication in the Astrophysical Journal; 23 pages, 9
figures