Abstract

We study the ηgg\eta^\prime g^* g^* vertex for arbitrary gluon virtualities in the time-like and space-like regions, using the perturbative QCD hard scattering approach and an input wave-function of the η\eta^\prime-meson consistent with the measured ηγγ\eta^\prime \gamma^* \gamma transition form factor. The contribution of the gluonic content of the η\eta^\prime-meson is taken into account, enhancing the form factor over the entire virtuality considered. However, data on the electromagnetic transition form factor of the η\eta^\prime-meson is not sufficient to quantify the gluonic enhancement. We also study the effect of the transverse momenta of the partons in the η\eta^\prime-meson on the ηgg\eta^\prime g^* g^* vertex, using the modified hard scattering approach based on Sudakov formalism. Analytic expressions for the ηgg\eta^\prime g^* g^* vertex are presented in limiting kinematic regions and parametrizations are given satisfying the QCD anomaly, for real gluons, and perturbative QCD behavior for large gluon virtualities, in both the time-like and space-like regions. Our results have implications for the inclusive decay BηXB \to \eta^\prime X and exclusive decays, such as Bη(K,K)B \to \eta^\prime (K,K^*), and in hadronic production processes N+N(Nˉ)ηXN + N (\bar N) \to \eta^\prime X.Comment: 23 pages, 19 figures (requires revtex4, amssymb, epsf); several typos corrected, this version now identical to the one accepted for publication in Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020